Читаем Покоренный электрон полностью

Причиной непроизводительной траты энергии служит, однако, отнюдь не низкое качество ламп. Напротив, современные электрические лампочки с витой вольфрамовой нитью очень хороши: их температура накала — 2700–3000 градусов — только вдвое ниже температуры Солнца! Срок службы — 1000 часов! Очень неплохие показатели!

В настоящее время ученые работают над созданием ламп с карбид-танталовыми и карбид-циркониевыми нитями. Применение сверхтугоплавких веществ позволит повысить температуру накала до 4000 градусов. Лампочка станет более экономичной. Но, если даже ученые добьются предельно выгодной — «солнечной» температуры в 6000 градусов, то все равно лампочка использует на преобразование в свет только 13 % потребляемой ею самой энергии.

Электрическая лампочка расточительна не потому, что не усовершенствована, а потому, что она по своей сущности является тепловым источником света — своеобразным электрифицированным потомком прадедовской лучины. И в лампочке и в лучине светятся раскаленные частицы твердого вещества: в лампочке — вольфрама, в пламени лучины — углерода.

Прежде чем превратиться в энергию света, электрическая энергия в лампочке преобразуется в теплоту. Чтобы добиться более экономичного использования электрической энергии, надо исключить промежуточную стадию — теплоту, сделать лампочку холодной. И здесь гениальный Ломоносов оставил ученым и изобретателям наказ: «Надо подумать о безвредном свете гниющих деревьев и светящихся червей. Затем надо написать, что свет и теплота не всегда взаимно связаны и потому различествуют».

В самом деле, почему для получения света нужно подражать лучине, костру или каганцу?

Глубоководные рыбы — различные киасмодоны и диаболидиумы — плавают в полной темноте на глубине 1–2 километров ниже уровня моря и охотятся, освещая себе путь светоносными органами, как автомобиль дорогу — фарами. Источники света глубоководных рыб — холодные (рис. 81).

Рис. 81. Глубоководные рыбы снабжены светящимися органами.


Грибки, которые селятся в гниющем дереве, и светящиеся моллюски южных морей также светятся, оставаясь холодными.

Жук-светлячок, который теплой летней ночью поблескивает из листвы зеленым огоньком, может гордиться своим фонариком. Холодный фонарик светлячка большую часть затраченной им энергии превращает в свет, тогда как человек довольствуется только тремя процентами.

Однако изобретатели холодных источников света не стали брать пример со светляка. Химические источники света получаются маломощными и дорогими. Внимание ученых вернулось к родоначальнице всех электронных приборов — разрядной трубке.

Было установлено, что разрядная трубка, наполненная парами натрия, светит очень ярко и превращает в свет до 50 % потребляемой электрической энергии. Натриевая лампа в 15 раз экономичнее обычной электрической лампочки. Если бы не ее желтый, неприятный свет, натриевая лампа вполне могла бы соперничать с нашими лампами. Высокая экономичность натриевых ламп доказала, что разрядная трубка, наполненная разреженными газами или парами, может стать выгодным источником света.

Возникновение электронной лавины

Примерно 40–50 лет назад, то есть, когда электрическое освещение только начинало вытеснять керосиновую лампу, наука уже стала подготовлять замену электрической лампочке.

Физики исследовали явления, происходящие в разреженном газе под воздействием потока электронов. В стеклянной трубке, наполненной разреженным газом — аргоном или неоном, атомы этих газов беспорядочно движутся, непрерывно сталкиваясь между собой и ударяясь о стенки трубки. Эта хаотичная толчея представляет собой обычное тепловое движение. При температуре, которую называют комнатной, атомы аргона движутся со скоростью около 350 метров в секунду.

Если к электродам трубки приложить напряжение, то на атомы газа это особого «впечатления» не произведет. Атомы — электрически нейтральны. Положительный заряд ядра атома уравновешен электронами, образующими оболочку атома, и нейтральный атом ни к катоду, ни к аноду не притягивается. Иное дело — электроны.

Движение электронов в металлической нити катода так же беспорядочно и хаотично, как и движения атомов в газе. Электроны вылетают из катода в окружающее пространство. Но, выскочив за пределы катода, электрон тотчас же попадает во власть электрического поля и мчится к аноду, постепенно убыстряя свой полет.

Электрон легок, он более, чем в 70 тысяч раз легче атома аргона. Налетев на атом аргона, электрон обычно отскакивает, как мячик, не теряя своей скорости и меняя только направление движения, атом же аргона вообще почти «не чувствует» толчка.

Но так обстоит дело только, когда скорость электрона при столкновении незначительна. Если же напряжение в трубке велико, а давление газа мало, электрон от столкновения до столкновения успевает набрать большую скорость, тогда его удар об атом приобретет другой характер. Электрон нарушит оболочку атома аргона и выбьет из нее электрон.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже