Читаем Понятная физика полностью

Мы уже говорили об электромагнитном поле, которое проявляет одновременно и электрические и магнитные свойства. Примером электромагнитного поля являются радиоволны. Пространство вокруг нас буквально пронизано радиоволнами от различных источников, в том числе находящихся в глубоком космосе. Включив подходящий радиоприемник, мы можем принимать радиоволны и слушать радиопередачи.

Для гравитационных и электромагнитных полей среда особо не нужна. Эти поля могут проникать и сквозь космический вакуум, где вещества практически нет. Или для таких полей средой является сам вакуум или эти поля сами себе среда. Открыты и другие поля, при помощи которых взаимодействуют частицы внутри ядер атомов. Эти поля можно назвать ядерными. Ядерные поля бывают слабые и сильные. В настоящее время физики работают над теорией, которая смогла бы объединить все типы полей. Задача эта трудная, но выполнимая.

§ 2. Энергия

Энергия для нас является базовым понятием. Это значит, что мы можем не терять время, чтобы определить, что такое энергия. Скажем только, что энергия это то, чем обладает каждое тело. Энергия передается от одного тела к другому при их взаимодействии. Если у одного тела энергия убывает, у другого она увеличивается. Энергию можно отбирать у тела по частям. Энергию можно добавлять телу по частям. Если тело изолировано от внешних воздействий, оно сохраняет свою энергию. Этот принцип называют законом сохранения энергии. Закон сохранения энергии выполняется всегда

.

Энергия нам нужна, чтобы перемещать грузы, которые имеют вес. Из опыта мы знаем, что такое вес тела. В спортзале мгновенно приходит понимание, что двухпудовая гиря весит гораздо больше, чем пудовая. Один пуд равен примерно 160 Н. Энергию измеряют в джоулях (Дж). Один джоуль это энергия, которую необходимо затратить, чтобы поднять груз весом 1 Н на высоту 1 м. Если спортсмен поднимает с пола гирю весом 160 Н на высоту 2 м, он тратит энергию, равную 320 Дж. Как видим, для человека 1 джоуль величина небольшая. Другое дело, для частицы размером с пылинку. Для нее это солидный запас энергии. Например, если в космосе метеор массой 1 миллиграмм (мг) имеет энергию 1 Дж, это значит, что он летит со скоростью почти 1500 м/с.

Это приличная скорость, больше скорости пули.

В любом теле скрыта внутренняя энергия Eº, величина которой равна произведению массы тела на квадрат скорости света: Eº=mc² (2.1). В нашем мире это огромная величина. Она в 10 раз больше, чем выделяется при взрыве термоядерного заряда с такой же массой. Внутреннюю энергию частицы можно выделить, если её массу полностью превратить в поле, например, в электромагнитное. Скажем сразу, что сделать это не так просто. Благодаря этому мы живем в довольно устойчивом мире.

Мы будем рассматривать энергию движения тел. Эта энергия зависит от массы. Еще она зависит от вида поля. Если мы немного поняли, что такое энергия, то мы можем сказать, что поле – это то, при помощи чего энергия передается от одного тела к другому. Именно поле переносит энергию. Благодаря виду поля энергия обретает конкретную форму: акустическую, гравитационную, электромагнитную или ядерную. Основная задача физики состоит в том, чтобы изучать различные формы энергии и придумать, как извлечь из этого пользу. Многое в этой сфере уже делается. Например, для движения экологически чистого электромобиля используют электроэнергию из аккумулятора, который зарядили на электростанции энергией, произведенной на гидростанции, где используют энергию движения потока воды, падающего под притяжением Земли.

Энергию движения тел условно называют механической. Это делают для того, чтобы не думать о типе поля, заставляющего тело ускоряться или изменять положение в пространстве. Соответственно, механическая энергия может зависеть от скорости тела или от его местонахождения в пространстве. Энергию, которая зависит только от местонахождения тела, называют потенциальной (Ep). Энергию, которая зависит только от скорости тела, называют кинетической (Ek). Если скорость тела равна нулю, его кинетическая энергия тоже равна нулю. Если тело находится в изоляции, например, метеор в межзвездном пространстве, его потенциальная энергия практически равна нулю.

Рассмотрим пример: аэростат поднимается на высоту 1 км и зависает. Скорости нет, значит, кинетическая энергия равна нулю. Но если с аэростата сбросить груз, например, использованный баллон из-под газа, то при падении на землю баллон может произвести разрушения, например, сломать куст. Легко понять, что баллон упал, потому что на него действовало притяжение Земли. Значит, баллон имел запас гравитационной энергии, которая зависит от высоты. По определению, эта энергия является потенциальной. Откуда она взялась? За счет подъема аэростата. Вспомним, что количество энергии, равное 1 Дж, передается телу весом 1 Н, если его поднять на высоту 1 м. Очевидно, если тело с весом P поднять на высоту h, то ему будет передано количество энергии Ep = P h (2.2).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии