Принципиально можно определить величины ' и не выключая источник ионизации, а, наоборот, добавляя относительно короткий импульс ионизации (именно это происходит в области Е во время солнечных вспышек) и изучая реакцию электронной концентрации на изменившиеся величины g. Чем выше эффективный коэффициент рекомбинаций, тем точнее кривая изменения [е] со временем будет следовать за кривой изменения g. Чем меньше ', тем медленнее электронная концентрация будет спадать от возмущенного значения до нормального (см. рисунок).
Наконец, по тому же принципу можно определить ' и из хода электронной концентрации в течение суток. Только в этом случае следует нанести кривую изменения [е] в течение дня и сравнивать с ней кривую изменения g. Если величина ' достаточно мала, будет наблюдаться некоторая асимметрия между дополуденной и послеполуденной частями кривой поведения электронной концентрации.
Все описанные здесь методы просты лишь принципиально. На самом деле они таят в себе много подводных камней. Ни ночью, ни во время полной фазы солнечного затмения величины g не падают до нуля, так как остаются другие источники ионизации; при анализе асимметрии поведения [е] необходимо учитывать несимметричность суточного хода параметров нейтральной атмосферы, что не так просто, и т. д. Тем не менее уже на первом этапе ионосферных исследований они дали ряд важных выводов об эффективном коэффициенте рекомбинации, которые качественно справедливы и по сию пору. Один из них состоит в том, что величина ' быстро падает с высотой, и, скажем, в области F1 она в 10 - 100 раз меньше, чем в области Е. Второй - касается двух законов рекомбинации, о которых мы поговорим позже.
Что касается количественных оценок ', то здесь бытовавшие в течение почти двух десятилетий представления об относительно низких скоростях рекомбинации ('10-8см3xс-1 в области Е и '10-9:10-10см3xс-1 в области F1) пришли в непримиримое противоречие с новыми данными и идеями, появившимися в конце пятидесятых - начале шестидесятых годов в результате вторжения в ионосферные исследования спутников и ракет. В настоящее время концепция высоких величин ! является общепринятой. Она базируется на надежных методах определения эффективного коэффициента рекомбинации и полностью подкрепляется современной фотохимической теорией.
Чтобы взглянуть на понятие эффективного коэффициента рекомбинации с точки зрения фотохимии, вернемся к уравнению (21). Что такое [Х+] в этом уравнении? Концентрация положительных ионов. Но если ионов несколько разных типов, как и есть на самом деле? Тогда, видимо, [Х+] есть сумма всех ионных концентраций. Ну a в этом случае, рекомбинации какого иона он должен соответствовать? Очевидно, он. должен являть собой средневзвешенное рекомбинационных коэффициентов для всех ионов
Но мы уже знаем, какие положительные ионы реально существуют в ионосфере выше 100 км. Обсуждали мы и различные процессы рекомбинации. А коли так, легко понять, что в последнем выражении должны учитываться лишь молекулярные ионы (ведь у атомных очень низкий коэффициент рекомбинации!), да и то не все. Как видно на схеме преобразования положительных ионов (стр. 59), в рекомбинации с электронами принимают реальное участие лишь два основных молекулярных иона N0+ и O2+. Значит, и практическая расшифровка нашей формулы для ' выглядит так:
Вот мы и привели наш важный параметр к очень простым величинам: относительным концентрациям двух молекулярных ионов и константам диссоциативной рекомбинации для этих ионов. И те и другие нам достаточно хорошо известны. Отталкиваясь от них, и поговорим подробнее о поведении ' в ионосфере.
Начнем с абсолютных величин. В области Е, как мы знаем, NО+ и О2+ являются основными ионами. Днем их примерно поровну. Значит, дневная величина ' должна лежать примерно посередине между *NO+ и *O2+.Это около (3:4) 10-7 см3xс-1. Двигаясь вверх, мы будем иметь все меньшую долю молекулярных ионов за счет появления все большего количества атомных. На высотах, скажем, области F1 суммарная доля ионов N0+ и О2+ не превосходит днем 25-30%. К тому же с ростом высоты растет электронная температура Те. А константы *NO+ и *O2+ обратно пропорциональны Те. Оба указанных фактора приводят к достаточно быстрому уменьшению ' с ростом высоты. В области F1 ' будет уже равен (3:5) 10-8 см3xс-1.
При переходе от дня к ночи также два фактора влияют на изменение '. С одной стороны, растет доля ионов NO+, с другой - падает электронная температура. В результате на высотах 100-200 км ночью эффективный коэффицкент рекомбинации в 2 - 3 раза выше, чем днем.
Хотя в этой главе мы специально ограничиваемся высотами 100 - 200 км, в данном случае, говоря об эффективном коэффициенте рекомбинации, нам придется захватить большие высоты, чтобы рассмотреть вопрос о так называемых двух законах рекомбинации.