Читаем Популярная аэрономия полностью

Вторая - наличие у них дополнительной энергии. За счет этой энергии возбужденные атомы и молекулы могут участвовать в таких реакциях, где участие их невозбужденных собратьев просто невозможно по энергетическим соображениям. Прекрасным примером является ионизация все тех же молекул в возбужденном состоянии О2(1g) солнечным излучением с длиной волны 1118-1027 A. Квант указанного излучения несет энергию около 11 эВ и не может ионизовать нормальную молекулу О2, потенциал ионизации которой равен 12 эВ. Но в возбужденной молекуле О2(1g) уже запасено около 1 эВ энергии. Вместе с энергией кванта излучения это получается уже 12 эВ, т. е. столько, сколько необходимо для ионизации. Молекула О2(1g) может быть ионизована указанным излучением, которое не способно ничего поделать с молекулами кислорода в основном состоянии.

Третья важная особенность возбужденных специй - это их оптические "паспорта". Ведь раз эти специи непрерывно излучают, мы, наблюдая за поведением соответствующих эмиссий (линий, полос и т. д.), можем судить и о поведении (т. е. об изменении во времени, а иногда - и в пространстве) количества тех или иных возбужденных атомов и молекул в верхней атмосфере. И дело здесь не только в том, что мы узнаем, как изменилось количество самих возбужденных частиц. Ведь изменения, происходящие с этими частицами, отражают происходящие в верхней атмосфере процессы. И сплошь и рядом это могут быть очень важные процессы, постоянный контроль за которыми весьма важен для решения аэрономических проблем.

Хорошим примером такого рода является красная линия атомного кислорода 6300 A, которую излучают атомы О, возбужденные в состояние 1D. Изучая пути образования и гибели этих атомов, выяснили, что на высотах ионосферной области F2 они образуются в результате основных ионосферных реакций (ионно-молекулярные реакции и диссоциативная рекомбинация), а потому тесно связаны с состоянием ионосферы в этой области. Таким образом, наблюдая за свечением линии 6300 A даже с Земли, можно судить о поведении весьма важной области ионосферы. Сейчас уже думают о мониторинге (т. е. постоянном наблюдении в разных местах Земли) красной линии, чтобы контролировать поведение ионосферного слоя F2, что очень важно для диагностики и прогнозирования распространения коротких радиоволн.

Имеются и другие идеи, как использовать атмосферные эмиссии для контроля процессов, в которых участвуют возбужденные частицы. Так, по поведению молекул O2(1g), за которыми удается следить, наблюдая инфракрасные полосы в области 1,27 мк, можно судить о ночном количестве озона на высотах около 80 км, где прямые измерения Оз ночью весьма затруднены. А распределение с высотой ряда эмиссий, порождаемых возбужденными атомами и молекулами кислорода, дает сведения о вертикальном профиле атомного кислорода на высотах 80 - 110 км, в области, где хуже всего проводить его прямые измерения.

Таковы основные особенности возбужденных частиц, которые делают их столь важными для аэрономии и послужили причиной столь пристального внимания к ним в последнее время.

Не все возбужденные атомы и молекулы, которые могут появляться в верхней атмосфере, способны активно вмешиваться в важные аэрономические процессы. Как правило, речь идет о так называемых метастабильных возбужденных частицах, т. е. о частицах, время жизни которых относительно излучения достаточно велико. Мы уже говорили в начале этой книги о понятии "время жизни". В данном случае речь идет о том, сколько данная частица может просуществовать (если на нее не влияют никакие посторонние факторы) между моментом возбуждения и моментом спонтанного (самопроизвольного) излучения запасенной энергии в виде кванта. Для так называемых разрешенных состояний это время очень мало и составляет ничтожные доли (10-3 - 10-4 и даже меньше) секунды. Естественно, частицы в таких состояниях не успевают ни накопиться до значительных концентраций, ни принять участие в каких-либо процессах: едва родившись, они отдают свою энергию в виде излучения и вновь переходят в невозбужденное состояние.

Другое дело - метастабильные состояния. Частица в таком состоянии может находиться не излучая многие секунды, минуты, а в некоторых случаях - часы и дни. Например, время жизни относительно излучения атомов O(1D) составляет 100 с, а молекул O2(1g) - 1,5 ч. Естественно, что за такое долгое время жизни метастабильные частицы могут и накопиться в значительных количествах, и принять участие в различных аэрономических реакциях.

Перейти на страницу:

Похожие книги

1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное
Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное