Напомним, что за работы в одной области науки (физике, химии, биологии и т. д.), согласно положению о Нобелевских премиях, один человек лишь один раз в жизни может быть удостоен этой награды[28]
. Ферми стал лауреатом Нобелевской премии в 1938 г., в возрасте 37 лет, за исследования процессов с нейтронами. В ходе этих исследований в 1934 г. Ферми первым высказал идею о возможности создания элементов с атомными номерами, большими, чем у урана, путем облучения ядер урана нейтронами. Присоединившись к ядру урана, один или несколько нейтронов делают его способным испустить одну или несколько бета-частиц. При этом заряд ядра увеличивается ровно на столько единиц, сколько было испущено бета-частиц. А именно зарядом ядра определяется, как известно, порядковый номер элемента. Самому Ферми не удалось доказать, что в его опытах происходил синтез трансурановых элементов. Но предложенный им способ широко использовался для синтеза новых элементов и изотопов. Элемент № 100, носящий имя Ферми, впервые получен именно при многократном захвате нейтронов ураном-238 с последующей цепочкой бета-распадов.Элемент — понятие прежде всего химическое, но на нынешнем этапе все науки, даже гуманитарные, так или иначе используют достижения физики и математики. Особенно тесно физика и химия переплелись в открытии и исследовании свойств трансурановых элементов. Поэтому совершенно справедливо, что имя Ферми, многократно увековеченное физиками в таких понятиях, как ферми (единица длины — 10–13
см; в таких единицах измеряются размеры ядер и элементарных частиц), фермион, уровень Ферми и т. д., заняло почетное место и в таблице Менделеева.Открытие
Если большинство трансурановых элементов было открыто в результате тщательно спланированных экспериментов, то элемент № 100 — фермий, так же как и предыдущий элемент — эйнштейний, был открыт совершенно неожиданно в продуктах термоядерного взрыва в ноябре 1952 г. Три группы химиков и физиков из разных лабораторий США переработали сотни килограммов пород с места взрыва и выделили первые в мире сотни атомов 99-го и 100-го элементов. Некоторые ядра урана-238, входившего во взрывное устройство, захватили при взрыве по 17 нейтронов. Образовавшийся нейтроноизбыточный изотоп уран-255, пройдя цепочку из восьми бета-распадов, превратился в фермий-255, который и был зарегистрирован по испускавшимся его ядрами альфа-частицам. Период полураспада фермия-255 — около 20 часов. Методика выделения фермия и эйнштейния из продуктов термоядерного взрыва описана в статье об эйнштейнии, поэтому не станем повторяться. Напомним лишь, что в течение трех лет открытие новых элементов было засекречено, как и все связанное с созданием самого мощного за всю историю человечества оружия.
Еще до того, как данные по элементам № 99 и 100 были рассекречены, эти элементы были получены и в мощном ядерном реакторе, работавшем в штате Айдахо в США. Процессы, приводящие к образованию новых элементов в реакторе и термоядерном взрыве, в принципе одни и те же. Разница во времени. Захват нейтронов при термоядерном взрыве происходит за миллионную долю секунды, в реакторе же насыщение исходного плутония нейтронами потребовало более двух лет.
Лишь в 1955 г. в журнале «Physical Review» в статье шестнадцати ученых, в том числе лауреата Нобелевской премии Г. Сиборга, были опубликованы результаты выполненных в 1952–1953 гг. опытов по выделению 99-го и 100-го элементов. Авторы статьи предложили назвать эти элементы в честь Альберта Эйнштейна и Энрико Ферми, скончавшихся за несколько месяцев до публикации. Предложенные названия были приняты.
Из более поздних публикаций стал известен и день рождения 100-го элемента — 16 января 1953 г., когда на ионообменной колонке были выделены его первые 200 атомов.
Радиоактивные свойства фермия
Синтезировано 18 изотопов фермия с массовыми числами от 242 до 259. Самый долгоживущий из них — фермий-257 с периодом полураспада 100 дней, он испускает альфа-частицы с энергией 6,5 Мэв. А самый короткоживущий изотоп — фермий-258, испытывающий спонтанное