Вот, пожалуй, в общих чертах все, что известно сейчас об элементе № 101 — элементе, носящем имя величайшего русского химика… Синтез всех без исключения искусственных элементов стал возможен не только благодаря современной технике, успехам ядерной физики и талантливости тех или иных исследователей. Главной теоретической основой прошлых и будущих синтезов был и остается периодический закон, закон Менделеева.
НОБЕЛИЙ
В 1955 г. была заполнена 101-я клетка таблицы Менделеева. Следующим, естественно, должен был стать синтез 102-го элемента. Создатели новых химических элементов стремились быть последовательными: шаг за шагом, ступень за ступенью. Но каждый последующий шаг за уран давался все труднее.
В 1956 г. к этой работе почти одновременно приступили исследователи из Нобелевского института физики в Стокгольме (в группе работали английские, шведские и американские ученые) и из Института атомной энергии в Москве. Вслед за ними в работу по синтезу 102-го элемента включились ученые Радиационной лаборатории Калифорнийского университета (Беркли).
Не прошло и года, как в научных журналах появились статьи, из которых следовало, что элемент № 102 синтезирован.
Эти сообщения подхватили газеты, о новом элементе узнал весь мир. Но ясности, необходимой для окончательного утверждения нового элемента в периодической системе, не было еще долгие годы. Объясняется это не только трудностями, возрастающими с каждым новым шагом в трансурановую область, но и в какой-то мере поспешностью заключений.
В итоге для окончательного ответа на вопрос: «Что же такое элемент № 102?» — понадобилось десять лет. Десять лет работы исследователей разных лабораторий и разных стран.
Исторически все работы по получению и исследованию 102-го элемента можно разделить на два периода: к первому относятся работы 1956–1959 гг., выполненные в лабораториях Стокгольма, Москвы и Беркли, ко второму — работы в Объединенном институте ядерных исследований в Дубне (1963–1966 гг.).
Общее, что объединяет все эти работы, — метод синтеза. Получить изотопы 102-го элемента можно было только в ядерных реакциях с участием тяжелых ионов, бомбардируя такими ионами мишени из урана и некоторых трансурановых элементов.
Разными путями
Вообще говоря, существует несколько способов получения новых элементов. В одном из них используется облучение урана или плутония мощными нейтронными потоками в стационарных или импульсных (взрыв ядерного устройства) условиях. При этом образуются переобогащенные нейтронами изотопы, подверженные бета-распаду. В результате серии таких распадов они превращаются в элементы с большими порядковыми номерами.
Другой метод основан на облучении ближайших тяжелых трансурановых мишеней заряженными частицами. При обстреле ядра протонами его заряд (а следовательно, и помер элемента) может увеличиться на единицу, при бомбардировке ускоренными альфа-частицами — па две. В частности, этим методом был впервые получен менделевий.
И наконец, третий метод заключается в использовании не очень тяжелых мишеней (уран, плутонии, кюрий и др.) и тяжелых бомбардирующих частиц (ионы азота, углерода, неона и других элементов вплоть до ксенона сейчас и до урана в будущем). Реакции с участием тяжелых ионов позволяют увеличить заряд ядра на несколько единиц.
Для синтеза 102-го элемента первый и второй способы непригодны, единственно приемлемым был метод тяжелых ионов. Изотопы 102-го элемента могут образовываться в нескольких реакциях, в таких например:
Проведение подобных реакций, улавливание и регистрация их продуктов связаны с огромными экспериментальными трудностями. Силы электростатического отталкивания между ядрами заставляют увеличивать энергию бомбардирующих частиц до десятков мегаэлектронвольт — иначе ядра не смогут слиться.