Читаем Популярная физика. От архимедова рычага до квантовой механики полностью

Это означает, что существует 50%-ная вероятность испускания нейтроном протона за эти 12 мин. Отсюда следует, что, если антинейтрино находится в непосредственной близости от протона в течение 12 мин, существует 50%-ная вероятность поглощения его протоном.

Однако антинейтрино не может находиться в непосредственной близости от протона не то что 12 мин, а и одной миллионной доли секунды. Безмассовые частицы, такие как нейтрино, антинейтрино, фотон и гравитон, сразу же после образования начинают движение со скоростью света и продолжают двигаться с этой скоростью до самого момента поглощения. Это значит, что антинейтрино будет находиться в непосредственной близости от протона всего лишь в течение 10–28 с, а в этом случае вероятность взаимодействия между этими частицами крайне мала. Нейтрино и антинейтрино настолько малы, что для их поглощения необходимо твердое вещество толщиной в среднем 3500 световых лет.

Ситуация с фотоном диаметрально противоположна. Фотон также перемещается со скоростью света, однако, когда ситуация с энергией требует испускания атомов фотона, испускание происходит уже спустя 10–8. Соответственно для успешного поглощения фотона частица должна находиться в непосредственной близости от атома в течение всего лишь 10

–8. Кроме того, длина волны фотона гораздо больше, чем нейтрино (если рассматривать обе частицы в виде волн), поэтому фотону для преодоления объекта необходимо больше времени, чем нейтрино, несмотря на то что обе частицы движутся с одинаковой скоростью.

Гамма-лучи поглощаются свинцовой плитой толщиной всего лишь 3 м. Видимый свет, длина волны которого еще больше, чем у гамма-лучей, настолько медленно проникает сквозь один атом, что поглощается веществом толщиной всего в несколько атомов.

Из этого вытекает одно очень важное для астрономии следствие. В процессе ядерного синтеза гелия из водорода протоны преобразуются в нейтроны, а вместе с фотонами образуются и нейтрино.

Фотоны несут 90–95% энергии, выделяемой солнечным ядром, в то время как нейтрино обладают лишь оставшимися 5–10% энергии.

Сразу после образования фотоны поглощаются и снова испускаются солнечным веществом; это повторяется снова и снова, поэтому в среднем сформировавшемуся в ядре фотону требуется около миллиона лет для того, чтобы добраться до поверхности Солнца и улететь в космос. Солнечное вещество является великолепным изолятором, о чем свидетельствует тот факт, что температура солнечного ядра составляет 15 000 000 C°, а температура поверхности, расположенной всего лишь на расстоянии 688 000 км, равна каким-то 6000 °C.

Однако образующиеся в ядре нейтрино не поглощаются солнечным веществом. Они пронзают солнечное вещество словно вакуум и со скоростью света вылетают наружу, достигая поверхности менее чем за 3 с. Столь быстрая потеря энергии снижает температуру солнечного ядра, но незначительно.

Некоторая часть солнечных нейтрино достигает Земли и проходит сквозь нее за 1/

125 долю секунды. Через каждый квадратный сантиметр поперечного сечения Земли (и через нас с вами тоже) проходит около 10 млрд. нейтрино. Мы подвергаемся бомбардировке день и ночь, так как даже в ночное время стоящая на пути солнечных лучей Земля не защищает нас от нейтрино. С другой стороны, проходя через нас, нейтрино не вступают во взаимодействие с нашим организмом, поэтому они безвредны.

Существует возможность образования нейтрино и антинейтрино без участия протонов и нейтронов. Например, электронно-позитронная пара может образоваться из фотонов гамма-лучей, после чего электрон и позитрон вступают во взаимодействие и образуют нейтрино и антинейтрино:

e + e+ → ν0
+ ν. (Уравнение 14.3)

В этой реакции энергия, заряд, количество движения, угловой момент, а также электронное число сохраняются. Общее электронное число электрона и позитрона равно 0, как и у нейтрино и антинейтрино.

Вероятность такого электронно-позитронного взаимодействия чрезвычайно мала даже при температуре солнечного ядра, поэтому его нельзя принимать за важный источник нейтрино. Впрочем, в ходе образования звезды ядро становится все горячее и горячее и вероятность преобразования фотонов в нейтроны через электронно-позитронную пару растет.

Подсчитано, что при температуре 6 000 000 000 °С преобразование фотонов в нейтроны идет настолько интенсивно, что нейтроны несут большую часть энергии ядра такой звезды. Нейтроны тут же покидают ядро, унося с собой столько энергии, что ядро взрывается. При этом выделяется огромное количество энергии. Предполагается, что именно в результате этого звезды взрываются, образуя сверхновые.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Ужасные психологические эксперименты: реальные факты из истории
Ужасные психологические эксперименты: реальные факты из истории

Эксперименты позволили человеку обосноваться и понять свое место в этом мире. Мы достигли всего опытным путем, путем проб и ошибок, дорогой разочарований и невероятных успехов. Эксперимент затрагивает взрослых и детей, людей и животных. Он следует за нами везде, во всех областях нашего существования, на всех этапах истории. Изготовление орудий труда, приручение диких животных, поиск съедобных растений или путешествия к неизведанным землям — не эксперимент ли для древнего человека? Но если окружающий мир изведан, что остается изучать? Верно, нашу психику. В этой книге описываются психологические эксперименты, которые отечественными авторами еще не доносились до широкой публики. Вы наверняка слышали про знаменитый Стэнфордский тюремный эксперимент, когда обычным людям предложили «поиграть» в надсмотрщиков и заключенных, и что из этого вышло, но слышали ли вы про Зефирный эксперимент? Что кроется под «выученной беспомощностью»? Знаете ли Вы, почему животные массово погибают в идеальных условиях жизни? Прочитав про эксперимент о белом медведе, сможете ли не думать об этом? А сможете ли растить ребенка вместе с обезьяной? Вопросы, который поднимает автор, — этика и гуманность психологического эксперимента, трансформация его целей спустя много десятилетий, служба на благо человечества… Или все-таки скандальные ошибки ученых?

Анастасия Александровна Шавырина

Научная литература / Научно-популярная литература / Образование и наука