Читаем Популярная физика. От архимедова рычага до квантовой механики полностью

Тогда общее электронное число образующихся по формуле 14.5 положительного мюона (–1) и нейтрино (+1) равно 0, что совпадает с электронным числом исходного пиона (пион не является членом семейства электронов, поэтому его электронное число равно 0). Точно так же образование по формуле 14.6 отрицательного мюона (+1) требует образования и антинейтрино (–1), так как общее электронное число равно 0.

Трудность вызывает процесс распада мюона. Мюон распадается на электрон и два нейтрино. Если электронное число сохраняется, то один из нейтрино должен быть антинейтрино. Распад отрицательного мюона можно записать так:

μ e + ν0 + ν. (Уравнение 14.7)

Электронное число отрицательного мюона равно +1. Общее электронное число продуктов распада равно +1 (электрон –1, нейтрино +1 и антинейтрино –1). Электронное число сохраняется.

Но почему же тогда нейтрино и антинейтрино в некоторых случаях аннигилируют друг друга, превращаясь в энергию, а в других случаях происходит соединение частицы и античастицы? Если это так, то, возможно, в некоторых случаях мюон распадается только на электрон, а оставшаяся масса переходит в фотоны?

Впрочем, такого не наблюдается, и физики пришли к выводу, что образующиеся в процессе распада мюона нейтрино и антинейтрино не являются противоположными друг другу частицами. Возможно ли, что нейтрино образуется в связи с мюоном, а антинейтрино в связи с электроном и что мюоны и электроны образуют различные типы нейтрино?

В 1962 году это удалось проверить следующим способом. Пучок электронов очень высокой энергии направили на атомы бериллия, и в результате столкновения образовался поток интенсивных пионов. Пионы моментально распадались на мюоны и нейтрино, а затем все эти частицы ударялись о лист брони 13,5 м толщиной. Лист останавливал все частицы, за исключением нейтрино. Те свободно проходили сквозь броню внутрь детектора, где они вступали во взаимодействие с нейтроном, образуя протон и электрон или же отрицательный мюон.

Если существует лишь один тип нейтрино, то в процессе его распада отрицательные мюоны и электроны должны образовываться в равных количествах:

ν0 + n0p+ + e
, (Уравнение 14.8)

ν0 + n0p+ + μ. (Уравнение 14.9)

Как видите, и в том и в другом случае барионное число сохраняется. Сохраняется и электронное число, так как и электронное число исходного нейтрино, и электронные числа образующихся электрона и отрицательного мюона равны +1. Во время субатомных взаимодействий все, что может произойти, происходит, поэтому физики и были уверены, что если существует лишь один тип нейтрино, то мюоны и электроны будут образовываться в равных количествах.

Как бы не так! Образовывались лишь отрицательные мюоны.

Это означало, что нейтрино, образующиеся в результате распада пионов на мюоны и нейтрино, являются мюон-нейтрино, особой разновидностью нейтрино, которое может образовывать только мюоны, но никак не электроны. Аналогично обычные нейтрино, образующиеся в связи с электронами и позитронами, являются электрон-нейтрино, и они могут образовывать только электроны или позитроны, но никак не мюоны.

Обозначив мюон-нейтрино как νμ а электрон-нейтрино как νe, перепишем формулы 14.1–14.6 следующим образом:

n0 p+ + e + νe
, (Уравнение 14.10)

p+ n0 + e+ + ν0e, (Уравнение 14.11)

e + e+ → νe + νe, (Уравнение 14.12)

νe+ p+ → e+
+ n0, (Уравнение 14.13)

π+μ+ + ν0μ, (Уравнение 14.14)

πμ+ νμ. (Уравнение 14.15)

В формулах 14.1014.13 электронное число сохраняется. В формулах 14.14 и 14.15 вступает в силу закон сохранения мюнного числа. Мюонное число отрицательного мюона и мюон-нейтрино равны +1, а положительного мюона и мюон-антинейтрино равны –1. Как видите, в формулах 14.14 и 14.15 мюонное число и до, и после распада пиона равно 0.

Формула 14.7 описывает взаимодействие с участием и электронов, и мюонов. Мы можем переписать ее как:

μ e + ν0
μ + νe. (Уравнение 14.16)

В результате такого взаимодействия мюонное число сохраняется: мюонное число исходного отрицательного мюона и образующегося мюон-нейтрино равно +1. Кроме того, сохраняется и электронное число: среди исходных элементов членов семейства электронов нет, поэтому электронное число равно 0, а среди образующихся продуктов есть электрон (электронное число +1) и электрон-антинейтрино (электронное число –1), и их общее электронное число равно 0.

Точно так же распад положительного мюона будет выглядеть следующим образом:

μ+ e+ + νμ + ν0e. (Уравнение 14.17)

В результате распада положительного мюона образуются позитрон, электрон-нейтрино и мюон-антинейтрино.

В ходе распада отрицательного или положительного мюона не происходит взаимной аннигиляции нейтрино и антинейтрино, так как они не являются античастицами. Взаимная аннигиляция приведет к нарушению законов сохранения электронного и мюонного чисел.

И электрон-нейтрино, и мюон-нейтрино являются безмассовыми незаряженными частицами со спином ½. До сих пор остается загадкой, чем же они отличаются друг от друга.


Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Ужасные психологические эксперименты: реальные факты из истории
Ужасные психологические эксперименты: реальные факты из истории

Эксперименты позволили человеку обосноваться и понять свое место в этом мире. Мы достигли всего опытным путем, путем проб и ошибок, дорогой разочарований и невероятных успехов. Эксперимент затрагивает взрослых и детей, людей и животных. Он следует за нами везде, во всех областях нашего существования, на всех этапах истории. Изготовление орудий труда, приручение диких животных, поиск съедобных растений или путешествия к неизведанным землям — не эксперимент ли для древнего человека? Но если окружающий мир изведан, что остается изучать? Верно, нашу психику. В этой книге описываются психологические эксперименты, которые отечественными авторами еще не доносились до широкой публики. Вы наверняка слышали про знаменитый Стэнфордский тюремный эксперимент, когда обычным людям предложили «поиграть» в надсмотрщиков и заключенных, и что из этого вышло, но слышали ли вы про Зефирный эксперимент? Что кроется под «выученной беспомощностью»? Знаете ли Вы, почему животные массово погибают в идеальных условиях жизни? Прочитав про эксперимент о белом медведе, сможете ли не думать об этом? А сможете ли растить ребенка вместе с обезьяной? Вопросы, который поднимает автор, — этика и гуманность психологического эксперимента, трансформация его целей спустя много десятилетий, служба на благо человечества… Или все-таки скандальные ошибки ученых?

Анастасия Александровна Шавырина

Научная литература / Научно-популярная литература / Образование и наука