Читаем Популярная физика. От архимедова рычага до квантовой механики полностью

Положив в основу «чистую» теорию, древние философы действительно сделали то, на что они больше всего были способны, что же касается их кажущегося презрения к экспериментированию — тут типичный случай, когда из вынужденной необходимости делают достоинство[2].

Ситуация медленно начала изменяться только в конце Средневековья. Все большее число ученых начали оценивать значение экспериментирования как метода испытания теорий и повсеместно начали пробовать разрабатывать методики проведения экспериментов.

Экспериментаторы не имели значительного влияния на науку вплоть до появления на сцене итальянского ученого Галилео Галилея (1564–1642). Он не изобретал экспериментирования, но сделал его показательным, захватывающим и популярным. Его эксперименты с движением были настолько изобретательны и убедительны в доказательстве, что они не только начали разрушение аристотелевской физики, но и продемонстрировали раз и навсегда потребность науки в экспериментаторстве. Именно от Галилео (он больше известен по имени[3]) и начинается отсчет даты рождения «экспериментальной науки», или просто — «современной науки».


Глава 2.

ПАДЕНИЕ ТЕЛ

Наклонные плоскости

Главной трудностью, с которой столкнулся Галилео, была проблема хронометрирования. Он не имел часов, достойных своего названия, так что был вынужден импровизировать. Например, он использовал контейнер с маленьким отверстием в основании, из которого вода капала в кастрюлю с достаточной равномерностью. Узнав вес воды, которая перетекла между двумя событиями, можно узнать затраченное время.

Конечно, данный способ не подходит для измерения времени нахождения тел в «свободном падении», то есть беспрепятственном падении вниз. Свободное падение с любой разумной высоты закончится слишком быстро, и количество воды, собранной за время падения, слишком мало, чтобы сделать даже приблизительно точные замеры времени.

Поэтому Галилео решил использовать наклонную плоскость. Гладкий шар будет катиться вниз по гладкому углублению на такой плоскости с явно более низкой скоростью, чем двигался бы в свободном полете. Кроме того, если уменьшить наклон этой плоскости к горизонтали, то шар будет катиться все менее и менее быстро; при точно горизонтальной плоскости шар не будет катиться вообще (по крайней мере, из состояния покоя). Этим методом можно замедлить скорость падения до уровня, при котором даже грубые устройства измерения времени начинают выдавать достаточно точные результаты.

Можно спросить: а может ли движение вниз по наклонной плоскости дать результаты, которые справедливо применять и для случая свободного падения? Кажется вполне разумным предположить, что может. Если что-то истинно для любого из углов, под которым находится наклонная плоскость, оно должно быть истинно и для свободного падения, поскольку свободное падение можно рассматривать как качение вниз по наклонной плоскости, максимально отклоненной по отношению к горизонтали, то есть под углом 90 градусов.

Например, можно легко видеть, что достаточно тяжелые шары различных весов катятся вниз по одной и той же наклонной плоскости с одной и той же скоростью. Это правило является истинным для любого угла к горизонтали, под которым отклонена наклонная плоскость. Если плоскость отклонить более резко, шары покатятся быстрее, но все они одинаково увеличат скорость своего движения и в конечном итоге покроют одно и то же расстояние за одно и то же время. Справедливо будет заключить, что свободно падающие тела пролетят равные расстояния за равное время независимо от их веса. Другими словами, тяжелое тело не будет падать более быстро, чем легкое тело, что не соответствует точке зрения Аристотеля.

(Существует известная история о том, что Галилео доказал это, бросив два объекта различного веса с наклонной Пизанской башни, и они ударились о землю одновременно. К сожалению, это — только легенда. Историки совершенно уверены, что Галилео никогда не проводил такого эксперимента, но вот голландский ученый Симон Стевин (1548–1620) производил подобные измерения за несколько лет до экспериментов Галилео. В холодном мире науки, однако, осторожные и исчерпывающие эксперименты вроде тех, что проводил Галилео с наклонными плоскостями, иногда значат больше, чем некоторые сенсационные демонстрации.)

Все же можем ли мы действительно так легко расстаться с аристотелевскими представлениями о движении? Нет никаких сомнений в справедливости утверждения того, что скорости движения шаров по наклонной плоскости равны, но, с другой стороны, не менее справедлив и тот факт, что мыльный пузырь падает гораздо медленнее, чем шарик от пинг-понга того же самого размера, и что шарик от пинг-понга падает гораздо более медленно, чем твердый деревянный шар того же самого размера.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Ужасные психологические эксперименты: реальные факты из истории
Ужасные психологические эксперименты: реальные факты из истории

Эксперименты позволили человеку обосноваться и понять свое место в этом мире. Мы достигли всего опытным путем, путем проб и ошибок, дорогой разочарований и невероятных успехов. Эксперимент затрагивает взрослых и детей, людей и животных. Он следует за нами везде, во всех областях нашего существования, на всех этапах истории. Изготовление орудий труда, приручение диких животных, поиск съедобных растений или путешествия к неизведанным землям — не эксперимент ли для древнего человека? Но если окружающий мир изведан, что остается изучать? Верно, нашу психику. В этой книге описываются психологические эксперименты, которые отечественными авторами еще не доносились до широкой публики. Вы наверняка слышали про знаменитый Стэнфордский тюремный эксперимент, когда обычным людям предложили «поиграть» в надсмотрщиков и заключенных, и что из этого вышло, но слышали ли вы про Зефирный эксперимент? Что кроется под «выученной беспомощностью»? Знаете ли Вы, почему животные массово погибают в идеальных условиях жизни? Прочитав про эксперимент о белом медведе, сможете ли не думать об этом? А сможете ли растить ребенка вместе с обезьяной? Вопросы, который поднимает автор, — этика и гуманность психологического эксперимента, трансформация его целей спустя много десятилетий, служба на благо человечества… Или все-таки скандальные ошибки ученых?

Анастасия Александровна Шавырина

Научная литература / Научно-популярная литература / Образование и наука