Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Мне кажется, что проблемы здесь вообще нет т. к. в классической теории не может быть точечного заряда. В уравнениях Максвелла вообще нет понятия заряда, есть только плотность заряда и плотность тока. Формально заряд можно определить как интеграл от плотности заряда по объему и объем не может быть нулевым т.к. интеграл по множеству меры ноль равен нулю. Когда заряд формально пишут как дельта функцию и говорят, что интеграл от нее по точечному объему конечен, то, как хорошо известно из теории обобщенных функций, такая операция определена некорректно.

Так что классическая электродинамика сама по себе не содержит никаких внутренних противоречий. Проблемы обоснования возникают искусственно, когда вводим точечные заряды и дельта функции, с которыми делаются незаконные операции. Просто надо сказать, что, как хорошо известно, классическая электродинамика не описывает все экспериментальные данные; она может быть лишь хорошим приближением в некоторых задачах.

9.2. Об ОТО

Другая знаменитая классическая (т.е., не квантовая) теория – общая теория относительности (ОТО). В своем Курсе Теоретической Физики, Ландау и Лифшиц пишут, что ОТО "является, пожалуй, самой красивой из существующих физических теорий". Т.е., хотя ОТО является чисто классической теорией, они считают ее красивее чем квантовая теория. В своей градации великих ученых Ландау ставит Эйнштейна на бесспорное первое место, т.е., выше ученых создавших квантовую теорию. А уж в популярной литературе Эйнштейн изображается чуть ли не богом. Это выглядит естественно т.к. то, что сделали Гайзенберг, Дирак, Паули и другие квантовые физики, писатели, пишущие популярную литературу, не знают, а черные дыры и Биг Бэнг кажутся фундаментальными достижениями науки на фоне примитивности обычной жизни. Нет сомнения, что Эйнштейн – действительно великий ученый, который внес большой вклад в разные разделы физики. Но из литературы может создаться впечатление, что создание ОТО по значению намного превосходит все остальное.

Стандартная фраза – что ОТО трактует гравитацию как искривление пространства-времени. А что такое пространство и время? В математике можно придумывать разные пространства, но в физике говорить о пространствах можно только если есть принципиальная возможность измерять координаты этого пространства т.к. один из принципов физики гласит, что определение физической величины – это задание способа ее измерения. Этот принцип явно положен в основу копенгагенской трактовки квантовой теории, а неявно он используется во всей физике.

Одно из явных физических противоречий ОТО такое. Кривизна пространства – это формальный аппарат, чтобы описать движение тел. Поэтому, если тел нет (пустое пространство), то кривизна не имеет физического смысла, хотя математически можно рассматривать любые пространства. Левая часть уравнений Эйнштейна содержит тензор Риччи, который характеризует кривизну пространства-времени, а правая часть – тензор энергии-импульса материи. Казалось бы, в пределе когда материя исчезает (формально это происходит когда тензор энергии-импульса в правой части уравнений Эйнштейна становится равным нулю), то понятие пространства должно терять смысл т. к., с точки зрения физики, пространство без материи – бессмыслица. Но в ОТО пространство в этом пределе не исчезает: левая часть остается и описывает плоское пространство Минковского, если космологическая константа Λ равна нулю, пространство де Ситтера, если Λ>0 и пространство анти-де Ситтера, если Λ<0. И т.к. пустые пространства нефизические, то предел ОТО когда материя исчезает тоже не имеет физического смысла.

Думаю, что следующее замечание является важным. Пока еще не существует теории которая работает при всех условиях. Например, классическая механика хорошо работает при скоростях намного меньших скорости света, но ее нельзя экстраполировать туда где скорости сравнимы со скоростью света. Другой пример, что классическую механику нельзя экстраполировать для описания уровней атома водорода. ОТО является теорией, которая хорошо описывает некоторые явления на макроскопическом уровне где есть большие массы (звезды или планеты), но ниоткуда не следует, что ОТО можно экстраполировать к пределу когда материя исчезает. Между тем, этот предел используется в так наз. проблеме темной энергии (см. ниже).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература