Читаем Портрет трещины полностью

Следующий период докритического подрастания трещины в акустическом отношении процесс довольно вялый – шепот да и только. Он «оживляется» лишь вспышками звучания в моменты возникновения новых трещин и объединения их. Постепенно подрастая, трещина «рас-

ходится» и с переходом через гриффитсовский размер начинает говорить, да что там – «орать» в полный голос. Она умудряется «вещать» и «пищать» не только в звуковом диапазоне от 3 до 25 кГц, но и захватывает область ультразвука. И хотя основная энергия при этом приходится на волны частотой от 200 до 500 кГц, но полный спектр простирается за частоту 1 МГц. Нет никакого сомнения, что по мере совершенствования методов измерения выяснится: ультразвук – не предел. Видимо, возможности трещины куда больше и достигают они так называемого гиперзвукового диапазона. А это не что иное, как тепловые колебания кристаллической решетки н частоты их от 109 до 1012-1013 Гц. И серьезные указания на этот счет имеются уже сейчас. Еще до'войны группа немецких акустиков обнаружила на поверхности разрушенных кристаллов круговые борозды. Оказалось, что они возникают из-за распространения по берегам трещины волн Вальнера (названных по имени открывшего их физика). Фронт трещины при взаимодействии с этими волнами отклоняется и образует борозды и ступеньки. А частоты этих волн составляют 1010-10" Гц. Вот вам и колоратурное сопрано!

Разнообразию исполнительских жанров трещины можно только позавидовать. Если певец «пользуется» только продольными акустическими волнами (воздух-то другие не пропускает!), то трещина, «выступающая» в твердой среде, «поет» и на продольных, и на поперечных. Мало того, она умудряется солировать и на так называемых поверхностных волнах. Правда, соло это очень своеобразное – волны бегут только по поверхности самой трещины. Если она внутренняя, то есть замкнутая, то они «перекатываются» от одной вершины трещины к другой. Так сказать, концерт для собственного удовольствия. Если трещина открыта, то волны эти выбегают на поверхность металла1. Впервые их наблюдал автор книги, а также И. С. Гузь. Оказалось, частоты волн лежат в пределах до 200 кГц, а максимальная интенсивность соответствует 50-60 кГц.

По отношению ко всем волнам, связанным с разрушением, можно сказать, что их энергия растет при увеличении приложенных напряжений и энергии деформи-

1 Интересно, что этот класс волн, вероятно, существует и у певцов – тело-то среда сплошная!

рования. Влияет на «шумливость» стали и термическая обработка. Правда, это происходит не прямо, а посредством изменения свойств самого металла.

Но вот настал и последний, финальный момент – трещина пересекла сечение детали и выбежала «сломя голову» наружу. Вот уж, действительно, «сломя голову», потому что она исчезла теперь и вместо одного куска металла мы имеем два. Но вспомним, в каком состоянии находятся две части металла по обе стороны бывшей трещины. Они, естественно, деформированы приложенными силами. После завершения разрушения сопротивление металла исчезло, следовательно, исчезла и внешняя сила. И тогда предоставленный самому себе металл начал восстанавливать свою форму. Если он был изогнут, то распрямляется; если был сжат, растягивается. Здесь и возникают мощные колебания, приводящие к распространению звуковой волны. Поскольку конструкция выступает сейчас в роли разорванной струны, ее частоты умеренны, акустический спектр, сопутствующий разрушению, как правило, сосредоточен на участке звуковых и начальных ультразвуковых частот. Но мощность их велика – ведь в едином ритме содрогается весь кусок освободившегося металла!

Звуки разрушения каждый раз индивидуальность, исключение, свойственное данному процессу разделения твердого тела. Неудивительно: ведь звучание процесса- это картина структурных особенностей и деформирования, и зарождения трещины, и закритического эпизода разделения материала, как бы нарисованная с помощью звука. Поэтому из серьезного анализа спектра звука можно понять, если не все, то многое, произошедшее и происходящее с металлом в процессе его разрушения. Другое дело, что это не просто, и сегодня по акустическому спектру нельзя еще получить полного представления о механических процессах, ибо далеко не все мы знаем и нам удается услышать эхо далеко не каждого физического процесса. Но это вопрос, безусловно, разрешимый и в ближайшие годы можно ожидать его прояснения. Однако уже сейчас кое-что понятно. Ясно, например: одна ли трещина или сто, уже по интенсивности звучания мы можем это определить. Поэтому «эхо» процесса четко различимо при обычном разрушении, и при ветвлении. Ветвление имеет несколько особенностей. Прежде всего относительно монотонный рост обыкновенной трещины

выглядит во втором случае как скачкообразный, прерываемый эпизодами зарождения ответвленных трещин. Кроме того, из одной трещины при ветвлении возникает настоящая «металка». Вспомните сотни трещин, лавиной расходящихся в закаленном стекле, пересекаемых другими, круговыми.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука