Ну, одна из разновидностей систем, сделанных по образцу мозга, — искусственные нейронные сети (ИНС), — работает уже так давно и хорошо, что стала, по существу, основой ИИ. Как говорилось в главе 7, ИНС (которые можно разделить на аппаратные и программные) были придуманы в 1960-е гг. специально для того, чтобы играть роль нейронов. Одно из основных их преимуществ состоит в том, что ИНС обучаемы. Если вы хотите научить нейронную сеть переводить текст с французского языка на английский, к примеру, вы можете для начала подать на вход французский текст и точный английский перевод этого текста. Этот процесс называется контролируемым обучением. Если образцов будет достаточно, сеть распознает и усвоит правила, связывающие французские слова с их английскими эквивалентами.
В мозгу нейроны соединяются друг с другом через синапсы, и именно в этих точках контакта происходит обучение. Чем прочнее синаптическая связь, тем прочнее воспоминание. В ИНС прочность синаптического соединения называется его «весом» и выражается в виде вероятности. ИНС присваивает си- наптические веса правилам перевода с иностранного языка, которые усваивает в процессе обучения. Чем дольше длится обучение, тем лучше будет перевод. В ходе обучения ИНС учится распознавать собственные ошибки и соответствующим образом корректирует синаптические веса. Это означает, что нейронная сеть изначально способна к самосовершенствованию.
После обучения, когда на вход системы поступит французский текст, ИНС сверится с вероятностными правилами, усвоенными в ходе обучения, и выдаст свой лучший перевод. По существу, ИНС ищет закономерности в структуре данных. На сегодняшний день поиск закономерностей в больших объемах неструктурированных данных — одна из самых перспективных областей применения ИИ.
Помимо перевода и анализа больших объемов информации ИНС сегодня активно используются в структуре ИИ, анализируют фондовый рынок и распознают объекты на картинках. Они присутствуют в программах оптического распознавания символов, предназначенных для чтения печатного текста, и в микросхемах, управляющих ракетами. ИНС обеспечивают «ум» умным бомбам. Да и большинство архитектур УЧИ без них не обойдутся.
Из главы 7 стоит вспомнить еще кое-что важное об этих вездесущих нейронных сетях. Подобно генетическим алгоритмам, ИНС работают по принципу «черного ящика». Это значит, что входные данные — в нашем примере французский текст — прозрачны. А выходные — здесь это английский текст — понятны. Но что происходит в промежутке, никто не знает. Все, что может сделать программист, — это руководить и направлять обучение ИНС, подбирая примеры и пытаясь улучшить результат перевода. А поскольку результат работы «черного ящика» — искусственного интеллекта — непредсказуем, его нельзя считать по-настоящему безопасным.
Судя по результатам работы алгоритмов Грейнджера, построенных по образу и подобию мозга, можно сделать вывод, что при создании искусственного разума лучше, возможно, следовать эволюционной модели и копировать человеческий мозг, чем создавать
В 2007 г. ученики Грейнджера из Дартмутского колледжа написали по результатам исследований мозга алгоритм визуального восприятия, распознававший объекты в 140 раз быстрее, чем традиционные алгоритмы. Он показал лучшие результаты, чем 80000 других алгоритмов, и выиграл приз IBM в $10 000.
В 2010 г. Грейнджер и его коллега Ашок Чандрашекар создали по образцу мозга алгоритмы контролируемого обучения, которые используются при обучении машин распознаванию оптических символов и голоса, выделению спама и т. п. Алгоритмы, сделанные по образцу мозга для использования в процессорах с параллельной обработкой данных, работали так же точно, как и последовательные алгоритмы того же назначения, но
В 2011 г. Грейнджер с коллегами запатентовал чип с изменяемой конфигурацией для параллельной обработки данных, основанный на этих алгоритмах. Это означает, что некоторые из самых распространенных структур мозга уже можно воспроизвести в виде компьютерного чипа. Стоит собрать их вместе, как в программе SyNAPSE фирмы IBM, — и вы на пути к созданию виртуального мозга. Всего один из этих чипов уже сегодня мог бы ускорить и улучшить работу систем, созданных для распознавания лиц в толпе, обнаружения ракетных пусков на спутниковых фотографиях, автоматической каталогизации вашей коллекции цифровых снимков и решения сотен других задач. Со временем искусственное воспроизведение мозговых схем, возможно, позволит «ремонтировать» поврежденный мозг, встраивая в него компоненты, способные восстановить «неисправные» области. Когда-нибудь микросхема параллельной обработки данных, запатентованная командой Грейнджера, могла бы заменить собой поврежденные структуры живого мозга.