Сразу несколько признаков указывают на то, что planum temporale
является одной из важнейших областей для декодирования речи. Она асимметрична: большая часть ее поверхности расположена в левом полушарии. Многие исследователи рассматривают такое анатомическое строение как одну из вероятных причин латерализации речи в левом полушарии. Еще до рождения человека левая planum temporale является больше правой; в течение первых нескольких месяцев жизни мозг младенца асимметрично активируется в ответ на звуки речи[180]. В детстве эта область быстро учится обрабатывать релевантные речевые звуки и игнорировать ненужные[181]. Например, японцы не слышат разницу между [р] и [л], поскольку в их языке эти звуки не используются для различения слов. Такая своеобразная форма «лингвистической глухоты» зарождается в левой planum temporale и соседних областях, которые к концу первого года жизни окончательно теряют способность различать [р] от [л].Будучи местом встречи зрительных и слуховых сигналов, planum temporale
, несомненно, играет важную роль в формировании навыка чтения. Действительно, она идеально приспособлена для заучивания соответствий между буквами и звуками.Когда ребенок учится декодировать буквы «б» и «а» в звук [ба], его planum temporale
одновременно воспринимает и буквы, и речевые сигналы, а потому легко может установить контакт между ними. В дальнейшем связь между графемами и фонемами приобретает автоматический характер. Фактически этот процесс становится машинальным настолько, что буква «а» в паре с «неправильным» звуком [о] заставляет верхний отдел височной коры подавать сигнал о несоответствии.
Рис. 2.19.
Верхняя часть височной области вносит важный вклад в преобразование букв в звуки. Нейровизуализация позволяет разграничить зрительные области, реагирующие на буквы, и слуховые области, которые активируются в ответ на звуки речи. Часть верхней височной коры (показана белым) мультимодальная. Это означает, что она отвечает как на звуковые, так и на зрительные сигналы. В пределах этих областей более мелкие секторы чувствительны к соответствию между буквой и звуком, сопровождающим ее (по материалам статьи van Atteveldt et al., 2004). Адаптировано с разрешения Neuron.
Точные пути, используемые для преобразования букв в звуки, пока изучены не до конца. В случае одной буквы верхняя часть височной доли, вероятно, получает информацию непосредственно из первичных зрительных областей. Цепочка букв требует более сложной обработки, включающей разбиение на графемы и слоги. Подобный процесс носит последовательный характер и, вероятно, задействует нижнюю часть теменной области, расположенную прямо над planum temporale
[182]. Эта область, вместе с зоной Брока, создает фонологический контур, который активируется всякий раз, когда мы повторяем что-то мысленно. Он принадлежит к артикуляционной или фонологической петле, отвечающей за сохранение информации (скажем, телефонного номера) в вербальной памяти[183]. По всей видимости, этот буфер необходим для произношения длинных слов – например, для расшифровки такой фармацевтической формулы, как ацетилсалициловая кислота (аспирин).Доступ к смыслу
Система, анализирующая значение слов, сильно отличается от той, что преобразует буквы в звуки. Семантика задействует широкий спектр областей; некоторые из них показаны на рис. 2.18. Примечательно, что ни одна из них не специализируется исключительно на письменных словах. Все они, скорее, «срабатывают» в ответ на мысли о понятиях, передаваемых устными словами[184]
или даже образами[185]. На самом деле их легко можно локализовать с помощью классического теста на ассоциации, при прохождении которого человека просят определить, какая из трех картинок лишняя – пирамида, пальма или молоток.