Как показано в работе [70], абсолютное ускорение в левой части этого уравнения определяется относительным (в лабораторной системе координат) ускорением
Отметим, что в систему уравнений для описания пространственного движения частицы при ее взрывном разлете кроме проекций уравнения движения (4.28) на координатные оси в лабораторной (стартовой) системе координат должны входить уравнения для нахождения ее координат. Такими уравнениями являются кинематические соотношения, устанавливающие зависимости проекций
Эти соотношения дополняют систему скалярных уравнений движения центра масс частицы:
где X,Υ,Z — проекции вектора полной (с учетом соответствующих составляющих скорости ветра) аэродинамической силы на координатные оси; g — ускорение силы тяжести. В окончательном виде дифференциальные уравнения движения частицы, вылетающей из взрывного очага в сносящий ветровой поток, имеют следующий вид [62,73]:
Здесь Ve — скорость ветра; pe — плотность воздуха; S — площадь миделева сечения частицы; Сх — коэффициент аэродинамического ее сопротивления, зависящий от режима движения в атмосфере. Системы уравнений (4.29) и (4.30) позволяют сложное пространственное движение центра масс частицы, движущейся после вылета из очага взрыва в ветровом потоке, представить в виде суперпозиции двух простых: продольного (в плоскости разлета) и бокового (в плоскости горизонта). При этом продольное движение оказывается независящим от бокового.
4.7. Ветровой перенос пыли