Читаем Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие полностью

Математическое моделирование физических характеристик атмосферных образований при аварийных ситуациях разной природы и с рабочими телами разных видов является составной частью более общей проблематики математического моделирования в экологии, развитие которой в последние годы получило мощный импульс [18-23]. Эта отрасль знаний — достаточно обширная область исследования и по выбору объектов моделирования, и по набору методов, и по спектру решаемых задач. Предлагаемые читателю в этом разделе примеры построения математических моделей атмосферных выбросов не претендуют на охват всех аспектов моделирования поставленной проблемы. Они обращают внимание на наиболее продуктивный и перспективный, по нашему мнению, метод — моделирование с помощью дифференциальных уравнений.

Этот метод, как и любой другой, безусловно, обладает своими достоинствами и недостатками. В частности, дифференциальные или разностные уравнения позволяют описывать динамику процессов в режиме реального времени, тогда как вариационные методы, как правило, предсказывают лишь конечное стационарное состояние системы или сообщества. Но на пути имитаций физических процессов с помощью уравнений возникают трудности как принципиального, так и технического характера.

Принципиальная трудность состоит в том, что не существует систематических правил вывода самих уравнений. Процедуры их составления основываются на полуэмпирических закономерностях, правдоподобных рассуждениях, аналогиях и искусстве составителя модели. Технические трудности связаны с высокой размерностью задач по моделированию сообществ. Для существенно многовидовых сообществ, потребляющих многочисленные ресурсы, требуется подбор сотен коэффициентов и анализ систем из десятков уравнений. При работе с системами из десятков и более дифференциальных уравнений оказывается, что проследить причинные связи для отладки, исключения ошибок и интерпретаций результатов в системе уравнений также сложно, как и в реальной экосистеме. В конце концов, оказывается, что исследователь не может быть уверенным, чему он обязан полученными результатами: реальному положению вещей, ошибкам в исходных данных, недочетам алгоритма или еще чему-либо. Модели, основанные на экстремальных принципах, как правило, преодолевают тупиковую ситуацию размерности, но сохраняют произвол в выборе самих исходных принципов [173].

В общем случае важнейшими этапами аналитического моделирования является формирование концепции модели и составление уравнений, описывающих поведение системы; при этом происходит упрощение реальности, которое, однако, не должно влиять на наиболее существенные свойства реальной системы. Затем идет параметризация, т.е. определение количественных значений параметров. Осуществление этой задачи возможно тремя способами:

— получением предварительных оценок значений параметров на основе наблюдений;

— нахождением комбинаций параметров, отвечающих моделируемой ситуации, базирующимся на методах оптимизации параметров;

— оценкой роли параметров модели с помощью анализа чувствительности, целью которого является определение того, как модель реагирует на изменение значений параметров и, как следствие, того, насколько правильно оценены параметры.

Следующий шаг аналитического моделирования — имитация, т.е. получение с помощью ЭВМ решения модельных уравнений при фиксированных значениях параметров и начальных условиях. И, наконец, испытание модели или, другими словами, ее верификация — сравнение ее выходных параметров с выходными данными системы.

Различают два способа испытания: проверка самой модели, состоящая в качественном или количественном сравнение данных, полученных в результате моделирования, с действительными значениями и проверка значимости модели — проведение экспериментов для изучения поведения модели и системы с целью обнаружения их сходства, а также для сравнения тенденций поведения модели и системы. Выделяется также адаптивное моделирование, при котором происходит автоматическая адаптация модели к системе с помощью ЭВМ.

Ниже в качестве примеров построения математических моделей атмосферных выбросов приводятся некоторые наиболее простые и достаточно эффективные разработки. Они на сегодняшний день получили всеобщее признание, и на их основе, очевидно, могут успешно разрабатываться многочисленные вариации конкретных нештатных ситуаций и опасных аварийных явлений.

Перейти на страницу:

Похожие книги

Как написать курсовую или дипломную работу за одну ночь
Как написать курсовую или дипломную работу за одну ночь

Известно, что независимо от времени, предоставленного на написание работы, большинством населения Земли она пишется в последний день (более того, в последнюю ночь). Несмотря на это, большинству населения Земли написание работы в последний момент не мешает защищать курсовые работы и получать дипломы вовремя. Итак, написание работы за ночь все же следует признать принципиально возможным.Естественно, написать работу за ночь можно только в том случае, если вы имеете о ней хоть какое-то представление и за прошедший семестр хотя бы периодически обращали на нее внимание. Если сегодня вечер первого дня, когда вы увидели тему, а завтра утром уже защита – имейте мужество и не издевайтесь над своим мозгом, дайте ему спокойно поспать, а книжку почитайте в другой раз. Если все же хоть какой-то багаж знаний у вас есть и вам действительно не хватает одной ночи для того, чтобы привести этот багаж в порядок и оформить на бумаге необходимый результат, – тогда вы взяли в руки нужную книгу!

Аркадий Захаров , Егор Шершнев

Научная литература / Прочая справочная литература / Словари и Энциклопедии