Эта история повторилась, когда пришлось сдавать подобный проект на факультете усовершенствования инженеров. Сдав проект по той же схеме, я стал ждать горячего одобрения. Однако получил двойку. Пришлось объясняться. Двойка тут же была исправлена на пятерку, и я получил рекомендацию написать статью в журнал «Автоматика и телемеханика». Статья была написана и опубликована. Но бочка меда не бывает без ложки дегтя: преподаватель, ставя мне пятерку, сказал, что эти вспомогательные функции лет за 150 до меня вывел великий математик Карл Гаусс и что поэтому надо бы сослаться на его работы. Правда, многочленов он подобным образом не суммировал — или не догадывался, или они ему не были нужны, но функции создал, и с тех пор существуют целые таблицы этих функций. Надо сослаться, а то — плагиат. Вот ведь какой подвох может учинить классик!
Пришлось сослаться.
В дальнейшем я неоднократно пытался всучить кому-нибудь этот замечательный метод, благо в нашем институте, где я работаю, пилотажники сидят в соседней лаборатории, а они только и занимаются системами автоматического регулирования. Но пилотажники попались какие-то консервативные, годографов вообще не строят и как-то обходятся без них. Хотя автопилоты у них работают исправно, и автоматическую посадку они давно освоили на многих самолетах.
Так и пропал бы этот великолепный метод, если бы однажды не понадобилось заняться прогнозом развития систем проводных связей.
Дело в том, что вариантов сопряжения различных электронных устройств существует великое множество. Если все системы разработаны независимо друг от друга, то каждый Главный конструктор сделает в своей системе входы и выходы так, что никакой другой Главный конструктор ни за что об этом не догадается. И когда их системы сойдутся, наконец, на самолете, то тут и выяснится оригинальность принятых решений: системы состыковать нельзя. Поэтому нами еще в шестидесятые годы была предпринята попытка навести в этом порядок и создать систему связей со стандартными сигналами. Но выяснилось, что и систем связей тоже может быть множество, даже если в их основе лежат какие-либо стандартизованные сигналы. Потому что эти сигналы могут быть разные — это могут быть напряжения или частоты, коды параллельные или последовательные, это могут быть временные интервалы и мало ли что еще. А ведь не вредно было бы знать, на каких именно принципах надо строить систему связей сегодня, а к чему готовиться завтра. И послезавтра тоже. Короче говоря, надо знать этапы развития связей.
Вот тут-то и пригодился логарифмический способ суммирования многочленов, в котором используются вспомогательные функции, вычисленные специально для прогнозирования этапов развития авиационных систем связей великим немецким математиком конца XVIII и первой половины XIX века Карлом Фридрихом Гауссом.
Мы выяснили, что каждый элемент, используемый в какой-нибудь системе связей, по массе и по интенсивности потоков отказов развивается по экспоненциальному закону. Ну, в самом деле. Над каждым узлом трудится свой конструктор. Вчера он этот узел спроектировал, и весил этот узел, скажем, килограмм. А сегодня за счет улучшения элементной базы, технологии и даже своего искусства он его спроектировал в 0,5 кг. А завтра еще в два раза легче. И так далее. На самом деле, конечно, между «вчера», «сегодня» и «завтра» проходит лет 5–8. Но, так или иначе, статистика показала, что все элементы при выполнении одних и тех же функций уменьшают свой вес в одной и той же пропорции за один и тот же отрезок времени. А это и есть экспонента.
Отклонения от этой экспоненты обычно невелики, но постоянная времени для каждого элемента своя. Чисто цифровые устройства, например, регистры уменьшают свой вес за 10 лет в 40 раз, аналоговые — в 5–6 раз, электромеханические — в 1,5–2 раза, а провода всего лишь на 20–30 %. И, следовательно, если на графике по горизонтали отложить время (годы), а по вертикали логарифм массы (математики, не придирайтесь! Массу отнесем к килограмму, получим безразмерную величину и возьмем логарифм на полном законном основании), то кривая развития каждого элемента окажется прямой линией, наклон которой определится ее постоянной времени, характерной именно для этого элемента. А начальное положение прямой определится любой точкой, для которой известна масса элемента в определенный момент времени.