Читаем Природа и общество. Модели катастроф полностью

Мы попытаемся предположить, в качестве модели политической жизни, что имеется только две партии, причем ни одна из них не имеет предпочтительной связи с какими-либо группами населения, но обе руководствуются только желанием выиграть выборы. Население же мы будем считать неоднородным, характеризуя его свойства одним параметром x, так что группы населения выделяются интервалами (x, x + dx). Пусть число людей в такой группе равно P(x)dx. Если считать из населения только избирателей и принять, что соблюдается равное избирательное право, то это же означает число голосов, которым располагает группа.

Предположим, что единственный вопрос, служащий предметом политических разногласий, это распределение бюджетных ассигнований между группами населения. Пусть функция их распределения есть m(x), то есть по предлагаемому бюджету с такой функцией распределения группа (x, x + dx) должна получить m(x)dx рублей. Каждая из двух партий предлагает перед выборами свой бюджет, в чем и состоит ее политика: первая партия предлагает распределение m1(x), вторая – m2(x). Полная сумма, подлежащая распределению, считается фиксированной, и не предполагается никакой бюджетной экономии, так что в обоих предложенных бюджетах общая сумма расходов фиксирована – обозначим ее через M. Тогда имеем условия

Пусть теперь группа избирателей (x, x + dx) отдает на выборах первой партии долю голосов C1(x), а вторая партия долю C2(x). Ясно, что оба эти числа неотрицательны, и если принять (для упрощения рассуждений), что голосуют все избиратели, то C1(х) + C2(х) = 1.

В целом по стране первая партия наберет

голосов, а вторая партия

голосов.

Естественно предположить, что доли голосов C1

(х) и C2(х) для всех групп населения определяются программами партий, так что они зависят от функций m1(x), m2(x) и, возможно, отдельно от х. Таким образом, мы имеем два функционала:

причем номер партии не входит в число параметров, влияющих на предпочтения избирателей: они расчетливы, но вне бюджетных вопросов "аполитичны".

Далее, примем еще одно упрощающее предположение: допустим, что голосование группы (х, х + dx) зависит только от размера ассигнований, предусмотренных для этой группы, но не от ассигнований для других. Это предположение "локальности" означает, конечно, равнодушие к интересам других, если они не отражаются немедленно на собственных интересах субъекта. Математически оно выражается в том, что функционалы C1, C2 выражаются через функцию трех переменных С в виде

По определению функционалов C1, C2, партии наберут, соответственно, следующее число голосов:

Задача первой партии состоит в достижении максимума функционала

при дополнительных условиях

Обозначая разность C(x,m1(x),m2(x)) - C (x, m2(x), m1(x)) через q (x, m1(x), m2(x)) , получаем уравнения Лагранжа

где функция q(x, m1, m2) антисимметрична относительно двух последних аргументов.

В виду полной симметрии задачи относительно обеих партий, естественно считать, что ее решения для обеих совпадают, то есть

m1

(x) = m2(x) = m(x)

тогда для определения получаем уравнение

Чтобы составить себе представление о свойствах решения, прибегнем к обычному в таких случаях моделированию: рассмотрим некоторое правдоподобное выражение функции С. Ясно, что если отношение m1/m2 стремится к нулю, то С тоже стремится к нулю, так как никто не будет голосовать за партию, которая ничего не обещает. Если же m1/m2 стремится к бесконечности, то С стремится к единице, потому что вторая партия оказывается в этом случае бесперспективной. Можно считать поэтому, что зависимость С от отношения m1/m2 имеет график вида, изображенного на рисунке 4.

Рис.4

Это наводит на мысль задать модельную функцию С(х, m1, m2) в виде

откуда имеем

и

Поскольку мы предположили, что для искомого решения m1(x) = m2(x), то есть отношение этих функций равно 1, то уравнение Лагранжа принимает вид

то есть партийная программа обеих партий будет иметь вид

m(x) = K x P(x) x a(x),

с коэффициентом пропорциональности K, определяемым бюджетными ограничениями.

Если реакции избирателей всех групп на предлагаемый бюджет одинаковы, то функция а(х) постоянна. В этом случае каждая группа получит ассигнования, пропорциональные ее численности. В более реалистическом случае группы реагируют различно, и множитель а(х) определяет "силу нажима" группы с характеристикой х, то есть ее избирательное влияние, определяющее вид основного функционала реакции.

Заметим еще, что при выбранном "модельном" виде этого функционала полученное решение, как можно показать, устойчиво, в том смысле, что передача некоторой суммы от группы (х, х + dx) группе (y, y + dy) изменяет значение N1 – N2 лишь на бесконечно малую высшего порядка и, следовательно, не приносит выгоды. Можно привести примеры функционалов, для которых дело обстоит иначе.

Заключение

Перейти на страницу:

Похожие книги

Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых
Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых

Осы – удивительные существа, которые демонстрируют социальное поведение и когнитивные способности, намного превосходящие других насекомых, в частности пчел – ведь осы летали и добывали пищу за 100 миллионов лет до того, как появились пчелы! В книге видного британского энтомолога Сейриан Самнер рассказывается о захватывающем разнообразии мира ос, их видов и функций, о важных этапах их эволюции, о поведении и среде обитания, о жизни одиночных ос-охотников и о колонии ос как о суперорганизме. Вы познакомитесь с историей изучения ос, ролью ос как индикаторов состояния окружающей среды, биоразнообразия экосистем и загрязнения сред обитания, с реакцией популяций ос на возрастающую урбанизацию и прогнозом того, как будет выглядеть наша планета, если на ней исчезнут осы. Узнав больше о жизни этих насекомых, имеющих фундаментальное значение для экологического баланса планеты, можно узнать больше о нас самих и о жизни на Земле.«Осы – одна из самых таинственных и обделенных вниманием жемчужин природы. Бесконечное множество их форм демонстрирует нам одно из самых непредсказуемых и впечатляющих достижений эволюции. Их жизнь тесно переплетена с жизнью других насекомых, а также грибов, бактерий, растений, почвы, экосистем и даже нас с вами. Цель этой книги – усадить ос за почетный стол природы и превратить жуткое отвращение, которое испытывают люди к осам, в восхищение и уважение, каких осы заслуживают». (Сейриан Самнер)В формате PDF A4 сохранён издательский дизайн.

Сейриан Самнер

Экология / Зарубежная образовательная литература / Образование и наука
Все лучшее, что не купишь за деньги
Все лучшее, что не купишь за деньги

Жак Фреско рисует образ глобальной цивилизации, в которой достижения науки и техники применяются с учетом нужд человека и экологии с целью обезопасить, защитить и обеспечить существование более гуманного мира для всех людей и содействовать его процветанию. Эта книга предлагает возможный выход из циклично повторяющихся экономических подъемов и рецессий, голода, бедности, ухудшения состояния окружающей среды и территориальных конфликтов, где мир — просто пауза между войнами. В общих чертах книга представляет реальный гуманный социальный дизайн цивилизации ближайшего будущего, в которой права человека будут не просто декларированы на бумаге, а станут образом жизни. Книга «Все лучшее, что не купишь за деньги» — это призыв ко всем нам строить общество, в котором все глобальные ресурсы станут общечеловеческим наследием.

Жак Фреско , Роксана Медоуз

Философия / Экология / Прочая научная литература / Образование и наука