Подобно тому как Эйнштейн и удачливые вкладчики оценили силу кумулятивной процентной ставки, так биологи при помощи Нортона оценили силу естественного отбора. Например, Нортон рассчитал, что скромное селективное преимущество 0,01 позволит доминантному признаку, встречающемуся лишь у восьми особей из 1000, достичь частоты встречаемости 90 % всего через 3 тыс. поколений. При десятикратном повышении селективного преимущества (s = 0,1) это значение достигается всего через 300 поколений. Поскольку время жизни поколения у многих видов организмов не превышает одного года, эти расчеты потрясли многих биологов. Появились и другие математические расчеты, в частности сделанные Джоном Верденом Сандерсоном Холдейном, который вместе с Роландом Фишером и Сьюэлом Райтом вывел набор формул, позволяющих понять связь между эволюцией, отбором и временем в широком диапазоне условий.
До сих пор я говорил о распространении уже имеющихся признаков в популяции, однако естественный отбор может обеспечить и экспоненциальное изменение этих признаков. Рассмотрим геометрические размеры какого-нибудь организма — высоту растения или длину тела животного. Мы знаем, что в популяции диких растений и животных эти параметры варьируют в каких-то пределах. Теперь предположим, что в каждом поколении у более высоких растений или более длинных животных имеется некоторое селективное преимущество. Если скорость изменения размера составляет всего 0,2 % за одно поколение (то есть приращение растения высотой 1 м или животного длиной 1 м составляет всего 2 мм), поначалу такое изменение будет незаметным. Однако всего через 200 поколений высота или длина этих растений или животных увеличится на 50 %.
Подобные расчеты показывают потенциальную мощь и скорость естественного отбора. Теперь посмотрим, что же происходит на самом деле.
Естественный отбор в дикой природе
За отбором гораздо легче следить в теории с помощью математических расчетов, чем в реальной ситуации в дикой природе. Кроме сложностей, связанных с контролем внешних условий, существует два основных осложняющих фактора, влияние которых ощущается очень сильно. Первый фактор — время. Если процессы протекают слишком медленно, то за время проведения эксперимента никаких изменений зафиксировать не удается. Вторая сложность — количество необходимых измерений. Для детекции слабых селективных преимуществ или недостатков необходим большой объем данных.
Второй фактор связан с вероятностью и статистикой. Если различие в приспособленности двух форм одного и того же вида очень незначительное, то для преодоления ошибки эксперимента и случайных вариаций необходимо провести измерения на большом количестве особей. Проиллюстрируем это на простом примере.
Предположим, мы хотим определить, имеет ли у какого-то вида животных один вариант окраски преимущество над другим. Сколько животных нужно осмотреть, чтобы выявить отклонение от некоего ожидаемого соотношения? Допустим, речь идет о многочисленной популяции, скажем, о популяции рыб, которых легко выловить и посчитать. Теория вероятности гласит, что чем большее число особей мы изучим, тем точнее полученный результат будет отражать реальное количество каждого варианта окраски рыб в популяции. Сколько нам нужно рыб, чтобы получить результат с доверительной вероятностью 95 % (что означает, что в 95 случаях из 100 истинное значение оцениваемой величины попадет в определенный нами интервал)? Как видно из представленной ниже таблички, погрешность эксперимента уменьшается при увеличении числа измерений.
Если мы осмотрим всего 100 рыб, погрешность может достигать 10 %. При такой высокой вероятности ошибки слабых изменений не различить. (Такая же проблема возникает при опросах на выходе с избирательных участков: выборка слишком мала, и поэтому предсказания результатов иногда бывают ошибочными.)