Важно понять, что отбор и мутации происходят в природе беспрерывно, буквально ежедневно. Окружающая среда постоянно влияет на живущие и размножающиеся в ней виды. Эволюция — это непрекращающийся процесс. Как мы не замечаем, на сколько с каждым днем подрастают наши дети или трава в саду, так незаметны для нас в повседневной жизни изменения климата и взаимные превращения видов. Но на больших временных отрезках изменение оказывается правилом, а не исключением. Простая математика эволюции позволяет нам ощутить связь и силу случайных мутаций и естественного отбора, помноженных на время.
Также важно понять, что отбор действует только в настоящем времени, в конкретных внешних условиях. Он не может влиять на то, в чем данный вид уже не нуждается, и на то, в чем пока еще нет нужды. Таким образом, наиболее приспособленный организм — это относительное понятие, временный статус, а вовсе не абсолютное или перманентное звание.
Летопись ДНК: отслеживаем этапы эволюции
Если дни, годы, да и целая жизнь человека — слишком краткий срок для регистрации изменений, как же наблюдать за созданием наиболее приспособленного организма? Практически вся история жизни и большая часть биоразнообразия относятся ко времени, предшествующему появлению первых документальных свидетельств истории человечества. Так как же узнать, что происходило в далеком прошлом? Как проникнуть в глубь времен и понять, каким образом эволюционировали виды и признаки?
Ответы на эти вопросы можно найти в последовательностях ДНК.
Непрерывность потока мутаций ДНК оказалась чрезвычайно важной для изучения эволюции. Известная частота мутаций позволяет биологам предсказать наличие определенных закономерностей в текстах ДНК. На уровне ДНК отбор способствует сохранению «успешных» версий отдельных генов. В результате мутаций в популяции могут одновременно существовать две или более версий конкретного гена. Судьба этих альтернативных версий зависит от условий отбора. Допустим, у нас есть две версии гена — A и B. Если A лучше обеспечивает выживание и воспроизводство вида, чем B, то отбор будет благоприятствовать форме A. Напротив, если более удачной версией является B, отбор будет благоприятствовать сохранению формы B.
Существует еще и третья возможность, которую биологи-эволюционисты осознали лишь тогда, когда научились определять последовательности генов и белков. Этот третий вариант реализуется в том случае, когда различие между версиями A и B — нейтральное, не влияющее на приспособленность организма. Раньше эволюционисты считали, что естественный отбор «отслеживает» абсолютно все изменения. Однако в 1960-х гг. Мотоо Кимура предположил, что существует множество нейтральных изменений, на которые отбор не действует. Значение так называемой нейтральной теории Кимуры заключается в том, что она описывает закономерности изменения ДНК во времени
В следующих шести главах я расскажу о том, как эволюция видов и признаков отражается в ДНК. В трех главах я покажу, как естественный отбор отбраковывает вредные изменения (глава 3), благоприятствует полезным изменениям (глава 4) и не влияет на нейтральные изменения (глава 5). Мы увидим множество примеров того, как наличие или отсутствие естественного отбора оставляет характерные следы в ДНК. Я начну с рассмотрения самых древних из известных нам генов, которые ведут свое начало от первых клеточных форм жизни на нашей планете, появившихся более 3 млрд лет назад.
Глава 3
Бессмертные гены. Бег на месте в погоне за вечностью
Совершенно очевидно, что все в природе изменяется, но за всеми этими изменениями стоит нечто вечное.
Он не искал нового царства.
В конце лета 1966 г. микробиолог Том Брок вместе со своим студентом Хадсоном Фризом бродил вокруг гейзеров и горячих источников в Национальном парке Йеллоустон. Их интересовали микробы, живущие в прудах и окрашивающие почву вокруг некоторых источников в оранжевый цвет.