Читаем Происхождение жизни. От туманности до клетки полностью

В случае нашей земной жизни эти свойства реализованы с помощью углерода, кислорода, азота и водорода. Атомы углерода образуют прочные связи друг с другом и с водородом, поэтому соединения этих двух элементов (углеводороды) химически неактивны. Даже высокоразвитая жизнь с эффективными ферментами с трудом справляется с их расщеплением: лишь немногие бактерии способны питаться углеводородами, например, нефти, поэтому ее разливы и опасны для окружающей среды. Для ослабления связей С-С в биохимии используется, как правило, кислород. Карбонильная группа (С=О) в молекулах придает им химическую активность и позволяет легко создавать и разрушать связи С-С. Если вспомнить, как происходит образование новых и разрыв старых связей C–C в реакциях обмена веществ, то окажется, что почти всегда в этом участвует карбонильная группа. Она есть в составе ацетил-КоА, кетокислотах цикла Кребса и сахарах. Если необходимо соединить или разорвать углерод-углеродную связь там, где этой группы нет, то она сначала будет создана путем окисления, а затем использована для изменения скелета молекулы. Иногда вместо нее применяется иминогруппа (C=NH) с похожими свойствами.

Для хранения и копирования генетической информации очень удобны полимеры, образующие, подобно ДНК, две параллельные[7] цепи, которые обеспечивают избыточность хранения, возможность исправить возникшие повреждения и простой механизм копирования: две цепи разделяются, и на каждой из них собирается новая парная ей цепь. Для генетического полимера желательно, чтобы он принимал линейную форму, а не сворачивался в клубки. ДНК содержит фосфатные группы, которые в воде несут отрицательный электрический заряд. Электростатическое отталкивание этих фосфатных групп способствует поддержанию относительно прямой формы ДНК. Наконец, физические и химические свойства генетической молекулы должны минимально зависеть от ее последовательности, несущей информацию, чтобы не нарушать взаимодействие с системой копирования. Это тоже достигается благодаря электрическому заряду фосфатных групп, распределенных по длине ДНК. Аналог ДНК, в котором фосфаты заменены на незаряженные диметилен-сульфоновые мостики (SNA – sulfone-linked DNA analog), сворачивается в клубки подобно белкам, его свойства (растворимость, способность к реакциям) сильно зависят от последовательности. В обычной ДНК соединение оснований в пары упорядочено тем же электрическим зарядом остова молекулы: остовы двух цепей отталкиваются друг от друга, и поэтому основания могут контактировать друг с другом только одной своей стороной, наиболее далекой от остова. В двухцепочечной форме SNA азотистые основания двух цепей соединяются не только в уотсон-криковские пары (А с Т и Г с Ц), но и множеством других способов, используя любые стороны молекулы, а не только самую дальнюю от остова цепи.

В качестве ферментов в земной жизни используются в основном белки. Есть два самых распространенных способа, с помощью которых разные ферменты ускоряют нужные химические реакции и подавляют побочные. Это связывание реагирующих молекул так, чтобы они контактировали только нужными сторонами, и проведение реакции в «кармане», внутри молекулы фермента, в относительно безводной среде. И то и другое требует, чтобы молекула фермента была определенным образом свернута. Белки идеально подходят для сворачивания, потому что остов белковой цепи лишен глобального электрического заряда. Аминокислоты в белке соединяются пептидными связями (-CO-NH-). Каждая такая связь несет небольшой отрицательный заряд на кислороде и небольшой положительный – на водороде, т. е. является диполем[8]

. Благодаря притяжению между диполями белки образуют свернутые структуры, такие как альфа-спираль и бета-слой (подробнее в главе 13). Другие типы связи между мономерами, например эфирная С-О-С, не обладают дипольными свойствами. Возможны только два аналога пептидной связи с аналогичными дипольными свойствами – сульфонамидная (-SO2-NH-) и фосфонамидная связь (-HPO
2-NH-) (рис. 12.1).



Всякий раз, когда мы задаем вопросы «Почему так?» и «Почему бы не по-другому?» об устройстве живых систем, возможны три группы ответов. Во-первых, выбор одного варианта из нескольких возможных может быть функциональным: жизнь пробовала разные варианты, и самый выгодный вытеснил все прочие. Во-вторых, выбор мог быть результатом исторической случайности: пространство вариантов устройства молекул очень велико (только для небольшого белка из 100 аминокислот возможны 20100 вариантов последовательности – это гораздо больше, чем атомов во Вселенной), и жизнь, что очевидно, не могла перепробовать все возможные варианты. В-третьих, выбор может быть рудиментарным: когда-то давно он был функциональным и лучше всего подходил для решения какой-то проблемы, которая давно уже неактуальна, а потом менять что-либо было уже поздно.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги