Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Получается, читать ДНК нелегко. Через 15 лет после открытия пространственной структуры ДНК Рэй Ву и Дейл Кайзер сумели распознать 12 нуклеотидов в геноме вируса[49]. Весь этот геном содержит около 48 тысяч нуклеотидов. Пять лет спустя Аллан Максам и Уолтер Гилберт получили последовательность из 24 нуклеотидов ДНК – область lac

-оператора (см. главу 4). Для этого потребовалось два года напряженной работы – на секвенирование с такой скоростью генома человека ушло бы 250 миллионов лет. Явно были нужны куда более эффективные методы.

И такие методы появились1. Несколько следующих страниц мы посвятим именно им – и не только из-за их значимости в современном мире, но и потому, что одним своим существованием они заявляют о важности познания физической природы ДНК и других биомолекул. Понятийным фоном для этой практической главы послужат такие свойства, как размер, жесткость и электрический заряд, и такие темы, как самосборка и предсказуемая случайность.

В 1976–1977 годах появились два остроумных метода определения последовательности ДНК: один разработали те самые Максам и Гилберт, а другой – Фредерик Сэнгер с коллегами. Метод Сэнгера оказался проще и в итоге доминировал в отрасли больше двух десятилетий. Я начну рассказ о техниках чтения ДНК именно с секвенирования по Сэнгеру.

Представьте, что у вас нет возможности последовательно, буква за буквой читать слово М-О-Л-Е-К-У-Л-А, но вы видите перед собой множество оборванных копий этого слова, в каждой из которых различима лишь последняя буква: «??Л», «?О», «?????У» и так далее. Заметив, что все трехбуквенные фрагменты оканчиваются на Л, все четырехбуквенные – на Е и так далее, вы установите, что вместе они образуют слово МОЛЕКУЛА. В принципе, в этом и состоит суть метода Сэнгера и еще нескольких подходов: чтение осуществляется путем распознавания отдельных кусочков, а не последовательного движения по цепи.

В главе 1 мы уже описывали несколько шагов из этого рецепта. Представьте себе не весь геном, а что-то более податливое – скажем, фрагмент ДНК размером несколько сотен пар нуклеотидов. Полимеразная цепная реакция (ПЦР) создает несметное число копий этого фрагмента, а тепло разделяет каждую двойную спираль на одноцепочечные половинки. Пока забудьте об одной из них и представьте миллионы идентичных одноцепочечных ДНК. Как вы помните, ДНК-полимераза создает идеальный комплемент любой цепи ДНК: руководствуясь принципом комплементарности, она сшивает из свободных нуклеотидов новую партнерскую цепь. А теперь представьте, что ученый применяет ДНК-полимеразу для репликации ДНК, как в нормальной ПЦР, но вводит в массив свободных нуклеотидов небольшое количество дефектных молекул: они мало отличаются от обычных A, Ц, Г, T и по-прежнему встраиваются в растущую цепь ДНК, но уже к ним новые нуклеотиды присоединиться не могут. Полимераза не умеет отбраковывать такое строительное сырье, и если ей попадается нормальный свободный нуклеотид, новая цепь удлиняется, если же встраивается измененный вариант, он блокирует дальнейший синтез и остается в цепи последним. Поскольку добавление терминирующих нуклеотидов происходит по воле случая и сравнительно редко, ученый получает множество цепочек ДНК, которые начинаются одинаково, но различаются по длине.



Пока складывается впечатление, что измененные нуклеотиды просто нарушают ход ПЦР, однако они сконструированы так, чтобы не только препятствовать удлинению ДНК, но и работать «маячками» – испускать свет одного из четырех цветов, уникальных для не-совсем-A, не-совсем-Ц, не-совсем-Г и не-совсем-T. Распознаваемым сигналом могут служить не только цвета. Сначала в секвенировании по Сэнгеру использовали радиоактивные метки, а вместо ПЦР (которую тогда еще не изобрели) для клонирования ДНК привлекали бактерий. Здесь мы описываем более поздние и эффективные разновидности метода, основанные, однако, на тех же принципах[50].

На последнем этапе плавления ДНК-дуплекс разделяется на две нити, и фрагменты разной длины оказываются маркированными на концах: теперь они напоминают те куски слов, где видно лишь последнюю букву. Ученый по-прежнему не знает длину конкретных фрагментов, и они слишком малы, чтобы наблюдать их в видимом свете. Как мы узнали из главы 1, ПЦР эксплуатирует одну из важных физических характеристик ДНК – плавление, то есть разделение двойной спирали на отдельные цепи при превышении специфической температуры. Секвенирование по Сэнгеру задействует и другое важное свойство ДНК – электрический заряд.

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов
Основы психофизиологии
Основы психофизиологии

В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Игорь Сергеевич Дикий , Людмила Александровна Дикая , Юрий Александров , Юрий Иосифович Александров

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука