Читаем Радиоэлектроника-с компьютером и паяльником полностью

Предупредить о приходе долгожданных гостей, оградить от гостей непрошенных, дать сигналы тревоги при наводнении и пожаре, выполнить ряд других полезных по хозяйству функций помогут простейшие устройства сигнализации и автоматики.

Звонят, откройте дверь

В рассказе Антона Павловича Чехова с названием «Ах, зубы!» любитель сценических искусств Сергей Алексеич Дыбкин, доведенный до истерии замучившей его зубной болью, мчится на извозчике к врачу. Добравшись до места, «Дыбкин прыгает с извозчика и с воплем взбегает наверх по каменной лестнице. Давит он пуговку звонка с таким остервенением, что ломает свой изящный ноготь».

Да, звонок дело ответственное.

Это было в конце XIX в., но уже тогда звонки были электрические и самые разнообразные. Одноударные, с автоматическим прерыванием, «жужжалки» и «дребезжащие», с тирольским колокольчиком и т. д. и т. п. Подобные звонки еще можно увидеть в аналоговых телефонах. «Кнопки-пуговки» тоже сохранились до наших дней, а, нажимая на кнопку вызова старого лифта, можно и палец сломать. Сегодня о прибытии гостей нам сообщают соловьиные трели, оркестровые мелодии или призывный «динь-дон». Большинство звонкое теперь не электромеханические, а электронные.

Простейший электронный звонок можно сделать своими руками, а заодно и потренироваться в электронике. В наборах Мастер КИТ имеются разнообразные конструкции. Остановимся на устройстве NK038

.


Модель мультивибратора


Схема звонка (рис. 101, а) представляет собой несимметричный мультивибратор на биполярных транзисторах PNP и NPN типов (VT1 — ВС557, VT2 — BD137-16). Схема отличается от ранее рассмотренного генератора сигналов азбуки Морзе (рис. 87, а) некоторыми деталями.





Рис. 101. Кнопочный дверной звонок Мастер КИТ NK038:

а — виртуальная модель в EWBб

— осциллограмма сигнала


Сборку виртуальной модели начнем с выбора транзисторов.

К сожалению, в библиотеке компонентов данной версии программы отсутствуют необходимые номиналы. В принципе можно было бы, найдя по справочным данным характеристики этих транзисторов, войти в режим редактирования их свойств и дополнить имеющиеся библиотеки. Однако типы параметров, приводимых в большинстве справочников и принятых в программе, отличаются, поэтому это требует дополнительной работы по расчетам и увязке. Вряд ли стоит этим заниматься с учетом назначения схемы.

Другой способ, который мы выбираем, заключается в использовании идеальных приборов. Это приведет к некоторым количественным отклонениям поведения моделей, но, по крайней мере, качественная (и даже полуколичественная) картина будет правильной. При желании (или при необходимости) от подобных идеализированных схем можно перейти и к более точным моделям.

Из особенностей принципиальной схемы (рис. 101, а), на которые необходимо обратить внимание при создании виртуальной модели в программе EWB и при монтаже реального устройства, отметим полярность электролитических конденсаторов и батареи питания. Нумерация узлов соответствует разметке печатной платы А503. В качестве выходного устройства ВА1 в модели использован схемный компонент Buzzer (зуммер, пищик). Он выбирается на панели Indicators

, а затем редактируется по рабочей частоте, напряжению и току (см. рис. 101, б). Нажимаем на управляющую клавишу [Space]. Из динамика ПК раздаются отрывистые звуки. Не удивляйтесь тому, что при испытаниях модели они сильно отличаются от звуков реального звонка. Это связано с тем, что в модели Buzzer является узкополосным электроакустическим преобразователем, тогда как реальный динамик — широкополосный. Кроме того, как уже отмечалось ранее, этот схемный компонент имеет собственные частотные установки.

Характер выходного сигнала можно пронаблюдать на осциллоскопе. Для этого в схемах вводится дополнительно к прилагаемым инструкциям заземление и включается осциллоскоп. При установке соответствующим образом его настроек на осциллограмме видна типичная картина периодической последовательности импульсов (см. рис. 101, в). Варьируя параметры RC-цепей можно изменять как частоту следования импульсов, так и их форму, что отражается на спектральном составе звука громкоговорителя (Buzzer, конечно, эти детали не воспроизводит).

Рабочая частота мультивибратора определяется номиналами резисторов и конденсаторов (R1, R2, и С1). Резисторы R3, R4 и конденсатор С2 определяют тембр звучания, a Cd — скорость изменения тональности звонка (согласно инструкции резистор R2 «закорочен», а конденсатор С3 не включен и поэтому не введен в схему модели).


Сборка электронного дверного звонка Мастер КИТ NK038


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки