Читаем Ракетные двигатели полностью

Оба насоса — центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата, поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала — при 4000 об/мин колеса турбины она достигает почти 500 л. с.

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива[15]

. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг, т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 — передвижная игла; 2 — механизм передвижения иглы; 3 — подача горючего; 4 — подача окислителя.


Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее