Читаем Ракетные двигатели полностью

Одним из наиболее простых реактивных двигателей является прямоточный воздушно-реактивный двигатель. Он представляет собой тонкостенную металлическую трубу, имеющую сужения на обоих концах. Когда этот двигатель перемещается с большой скоростью в атмосфере, то через переднее отверстие внутри него поступает воздух. В средней части двигателя в воздух впрыскивается топливо, и образующиеся вследствие сгорания топлива горячие газы вытекают через заднее отверстие двигателя в атмосферу. Вес топлива, впрыскиваемого в двигатель, намного меньше веса воздуха, так что по существу эти газы представляют собой тот же воздух, но нагретый. Так как вытекает горячий воздух, то его скорость больше, чем скорость холодного воздуха, втекающего в двигатель, т. е. при протекании через двигатель скорость воздуха увеличивается. Вследствие этого струя воздуха, протекающего через двигатель, оказывает на него реактивное действие, создает реактивную тягу. Как видно, в этом случае сила реакции уже приложена к самому двигателю — это двигатель прямой реакции.

Но и здесь реактивная сила создается, как и раньше, в результате отбрасывания массы воздуха, в котором перемещается двигатель. Разница только та, что это отбрасывание осуществляется не винтом, а самим двигателем. Окружающая двигатель среда — воздух — необходима для работы воздушно-реактивного двигателя, потому что кислород воздуха обеспечивает сгорание топлива.

Естественным был следующий шаг в развитии двигателя прямой реакции: создание двигателя, работа которого полностью не зависит от окружающей среды. Такой двигатель, создающий силу тяги в виде реакции отбрасываемых частиц собственной массы передвигающегося аппарата, точнее, массы продуктов горения топлива, находящегося на борту аппарата, и носит название ракетного двигателя[1].

Для иллюстрации принципа передвижения под действием реакции отбрасываемых частиц собственной массы мы могли бы представить себе на том же водохранилище необычное и неудобное судно в виде лодки с установленной на ней пушкой, стреляющей назад, через корму лодки: выстрел — и давление пороховых газов выталкивает снаряд, который скрывается за горизонтом. Однако те же газы оказывают и реактивное действие на пушку, толкая ее, а вместе с ней и лодку, вперед. Пока хватит запаса снарядов, наша лодка будет двигаться; с каждым выпущенным снарядом масса лодки будет уменьшаться, так как большая часть этой массы в виде массы снарядов будет отброшена с целью создания реактивной силы.

Естественно, что нет нужды в стрельбе снарядами. Тот же эффект может быть получен, если из пушки будут вытекать с большой скоростью газы — продукты сгорания пороха или какого-нибудь другого вещества. Важно лишь, чтобы это сгорание происходило без участия атмосферного воздуха. Отбрасывание массы газов и создаст реактивную силу, благодаря которой может быть обеспечено передвижение как в воздухе, так и в безвоздушном пространстве. Это свойство делает ракетный двигатель единственно пригодным для сообщений в верхних слоях атмосферы и вне ее пределов.

Фиг. 6. К теореме о движении центра тяжести.


Принцип прямой реакции часто объясняют, используя известную из механики теорему о движении центра тяжести. Согласно этой теореме внутренние силы, действующие в системе тел, не могут изменить положения центра тяжести этой системы. Легко понять, что это действительно так. Вряд ли, например, найдется смельчак, который стал бы оспаривать известную народную поговорку: «Самого себя за волосы не поднимешь». Представим себе два одинаковых металлических шарика весом по 1 кг, лежащих на пластинке, уравновешенной на острие ножа (фиг. 6). Между шариками находится спиральная пружина. Сначала эта пружина сжата, а затем начинает разжиматься. Сила упругости пружины (внутренняя сила системы) будет действовать на оба шарика, которые вследствие этого начнут двигаться в противоположные стороны. Но это движение шариков не будет произвольным: шарики должны двигаться так, чтобы опирающаяся на нож пластинка продолжала оставаться в равновесии; это и будет означать, что центр тяжести системы не изменил своего положения. Для этого скорости V движения обоих шариков должны быть одинаковыми, так как одинаковы их массы.

Положение не изменится, если один шарик будет тяжелее другого, допустим, в два раза, т. е. их веса будут равны 1 и 2 кг. Но только теперь для сохранения равновесия пластинки больший шарик должен будет двигаться со скоростью, в два раза меньшей, чем меньший шарик, так как только в этом случае центр тяжести системы не изменит своего положения; тем самым будет соблюдено правило рычага — произведения силы на плечо справа и слева от точки опоры будут одинаковыми.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее