Читаем Расчеты в Excel полностью

Зная радиус Rb и угол сектора «W»– найдем площадь сектора.

Зная стороны ОК и ОE прямоугольного треугольника – найдем его площадь

и вычтем из площади сектора радиуса Rb.

Малый радиус Rm = EА; Зная угол «W»прямоугольного треугольника КХВ

определяем угол сектора малого радиуса как:

G = 90 – W; Далее: определим площадь сектора малого радиуса.

Площадь сечения коробовой кривой найдена.

Найдем диаметр круга равный по площади заданной коробовой кривой:

.d =sqrt( 4*S / Pii ); Где S – площадь заданной коробовой кривой.

Контрольный расчет:

Дано:

Большая ось = 80; Малая ось = 60;

Рис. Коробовая радиусы.

….



….

Расчет:

Больший радиус = 100,0..

От оси до центра Б. радиуса = 40,0..

Меньший радиус = 50,0..

От оси до центра M. радиуса = 30,0..

Угол раствора Б. радиусов = 73,739795..

Площадь ограниченная коробовой кривой = 15106,498;

Диам. Круга равной площади = 138,687;

Запись программы в Excel

Первым делом откроем лист Excel по имени Е_12. ( Скачать из приложения ).

Сохраним его как Е 14. Далее на листе необходимо выполнить заголовок расчета:

«Геометрия овала». Далее форматируем столбики как описано @002. @003. @004. @004А.

Расчеты: Здесь много расчетов связанных с углами. Компьютер угловые функции ведет в радианах.

@010. Угол 180 градусов равен числу Pii = 3,1415926 радиан..

Перевод из градусов в радианы: Радианы = Градусы*Pii/180…

Перевод из радиан в градусы: Градус = Радиан*180/Pii…

Любая тригонометрическая функция требует ввода аргумента в радианах.

Аргумент следует предварительно рассчитать и в функцию вставить адрес ячейки с аргументом.

Формулы приведены выше и в Excel. Можно посмотреть в открытом листе Е14.

Все расчеты проведены в столбике «F»так как много промежеточных расчетов.

Итоговые результаты выведены в столбик результатов «D».

Рисунок вставляем в лист, как описано в @013.

Выполняем защиту столбиков и сохраняем лист как Е 14. Затем сохраняем как Е 14_Z.

Проверим форматирование столбиков и защитим лист @007.

Геометрия радиусной кривой

Все расчеты по разным вариантам исходных данных:

Хорда L; Прогиб Н; Радиус R; Угол G.

Эти расчеты часто требуются для нахождения элементов детали имеющих форму сегмента окружности.

Рис. Геометрия радиусной кривой.



Расчет производим из следующих соотношений:

В = sqrt( R*R – X*X); L = X + X; H = R – B; G = аrcsin ( X / R );

Длина дуги = Pii * R * G / 90;

Площадь сектора Ss = Pii * R * R * G / 180;

Площадь треугольника под хордой St = L * B /2;

Площадь сегмента ( горбушки ) Sg = Ss – St;

Некоторые комбинации данных не позволяют прямого расчета,

тогда применяем метод компьютерного подбора.

Контрольный расчет:

Радиус R = 1000;

Диаметр D = R+R; D = 2000; Хорда L = 765,3668647;

Стрела прогиба максимальная H = 76,12046749;

Угол: Центр – Хорда: 2 * G = Au = 45 градусов..

Площадь сектора круга с углом = Au:

Sk=Pii*D*D* Au /(4*360); Sk = 392699,0816987241;

Площадь треугольника в секторе:

St=(L/2)* B; St = 353553,3905932738;

Площадь горбушки отсеченной хордой:

S = Sk-St; S = 39145,69110545033;

Длина дуги над хордой:

L=Pii*D*Au /360; L = 785,3981634;

Запись программы в Excel.

Первым делом откроем лист Excel по имени Е_12. ( Скачать из приложения ).

Сохраним его как Е 15. Далее на листе необходимо выполнить заголовок расчета:

«Геометрия радиусной кривой.». Далее форматируем столбики как описано @002. @003. @004. @004А.

Далее как в предыдущем.

Примечание: При исходных данных «Хорда – Прогиб» прямым расчетом не решается – применяем метод подбора с шаговым уточнением. В Excel програмные циклы запрещены – поэтому автоматический подбор запрограммировать не получится. Такие программы делаем в Python..

Координаты радиусной кривой

Построение части окружности методом подъема применяется тогда, когда радиус слишком велик

для традиционного построения, либо когда точка центра радиуса недоступна.

Если внутри контура кривой расположены объекты мешающие построению хорды, тогда строят линию, паралленьную хорде, с точкой касания в вершине кривой и от этой линии откладывают величины «Н2».

Рис. Координаты радиусной кривой.

,,,,



Построение части окружности методом подъема.

Построение:

Задаем максимальный размер хорды L.

Из середины максимальной хорды L строим перпендикуляр Н1.

Х1 = L / 2; В = sqrt( R*R – X1*X1); H1 = R – B;

Определили максимальную стрелу прогиба кривой H1.

Далее задаем произвольное расстояние от центральной оси Х2.

Находим стрелу прогиба Н2 = R – ( sqrt( R*R – X2*X2));

Находим высоту подъема в точке Х2: Hm = H1 – H2;

Задавая ряд текущих значений Х2 и рассчитывая соответствующие высоты подъема Hm

– получаем достаточное количество точек,

для построения радиусной кривой по точкам на этой кривой.

Контрольный расчет:

Исходные данные:

Радиус R = 10000;

Хорда максимальная заданная L = 8000;

Подъем максимальный в центре хорды = 834,8486100883201.

Задаем ряд точек:

От центра хорды до точки по оси Х-Х = 3000,0.

Величина подъема ( перпендикуляра ) = 374,2406242577763.

От центра хорды до точки по оси Х-Х = 2000,0.

Величина подъема ( перпендикуляра ) = 632,8075812210318.

Перейти на страницу:

Похожие книги

1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука
Первая Пуническая война
Первая Пуническая война

Первой Пунической войне суждено было навсегда остаться в тени второй войны Рима с Карфагеном. Морские битвы при Милах и Экноме, грандиозные сражения на суше при Панорме и Баграде оказались забыты на фоне блестящих побед Ганнибала при Треббии, Тразименском озере и Каннах. Несмотря на это, Первая Пуническая была одним из самых масштабных военных противостояний Древнего мира, которое продолжалось двадцать три года. Недаром древнегреческий историк II века до н. э. Полибий говорит ясно и недвусмысленно: именно Первая Пуническая является наиболее показательной войной между двумя сверхдержавами Античности.Боевые действия этой войны развернулись в Сицилии и Африке. На полях сражений бились многотысячные армии, а огромные флоты погибали в морских сражениях и от буйства стихий. Чаша весов постоянно колебалась то в одну, то в другую сторону, и никто не мог предсказать, на чьей стороне будет победа.

Михаил Борисович Елисеев

История / Учебная и научная литература / Образование и наука
Поэтика Достоевского
Поэтика Достоевского

«Мы считаем Достоевского одним из величайших новаторов в области художественной формы. Он создал, по нашему убеждению, совершенно новый тип художественного мышления, который мы условно назвали полифоническим. Этот тип художественного мышления нашел свое выражение в романах Достоевского, но его значение выходит за пределы только романного творчества и касается некоторых основных принципов европейской эстетики. Достоевский создал как бы новую художественную модель мира, в которой многие из основных моментов старой художественной формы подверглись коренному преобразованию. Задача предлагаемой работы и заключается в том, чтобы путем теоретико-литературного анализа раскрыть это принципиальное новаторство Достоевского. В обширной литературе о Достоевском основные особенности его поэтики не могли, конечно, остаться незамеченными (в первой главе этой работы дается обзор наиболее существенных высказываний по этому вопросу), но их принципиальная новизна и их органическое единство в целом художественного мира Достоевского раскрыты и освещены еще далеко недостаточно. Литература о Достоевском была по преимуществу посвящена идеологической проблематике его творчества. Преходящая острота этой проблематики заслоняла более глубинные и устойчивые структурные моменты его художественного видения. Часто почти вовсе забывали, что Достоевский прежде всего художник (правда, особого типа), а не философ и не публицист.Специальное изучение поэтики Достоевского остается актуальной задачей литературоведения».Михаил БахтинВ формате PDF A4 сохранен издательский макет книги.

Михаил Михайлович Бахтин , Наталья Константиновна Бонецкая

Литературоведение / Учебная и научная литература / Образование и наука