В заключение исследуем само отношение «быть моделью». Мы уже видели, что это отношение является рефлексивным, так как каждый объект является моделью самого себя. Очевидно также, что если один объект является моделью другого, то в силу сюръективности отображения первого объекта на второй, этот второй совсем не обязательно будет моделью первого объекта. Следовательно, это отношение не является симметричным. Ясно также, что если этот второй объект является моделью некоторого третьего, то и первый будет являться моделью третьего. Таким образом, отношение «быть моделью» является рефлексивным и транзитивным. Такие отношения называются отношениями нестрогого порядка.
1.3. Операции и алгебры
Введем понятие бинарной операции. Говорят, что на множестве А задана бинарная операция, если задано отображение
Рассмотрим теперь множество
то такой группоид называется полугруппой. Закон ассоциативности означает, что в полугруппе можно любым способом расставлять скобки при записи действия операции на некоторое множество элементов из
а также для каждого элемента
называется группой. Итак, непустое множество элементов произвольной природы называется группой, если: 1) над этим множеством задана бинарная операция, 2) выполняются условия (9)—(11).
Отметим, что в определении фигурирует множество элементов произвольной природы, значит, таким множеством может быть и множество самих операций. Над таким множеством можно определить новую бинарную операции, ставящую в соответствие любой паре операций некоторую третью. Обычно в качестве такой операции рассматривают последовательное выполнение двух операций из исходного множества, для этого необходимо, чтобы всякая композиция двух операций вновь давала операцию из заданного множества. Если при этом также выполняются условия (9)—(11), то заданное множество операций является группой. Еще раз отметим, что сами операции могут быть совершенно произвольной природы.