Это имело определенное отношение к важнейшей проблеме при изучении кДНК – нестабильности мРНК при выделении ее из тканей. Эта молекула имеет тенденцию распадаться на более мелкие фрагменты, прежде чем ее удается полностью скопировать. Другие проблемы связаны с ферментом, называемым обратная транскриптаза, который используется для преобразования нестабильных мРНК в более стабильные кДНК. Фермент отсоединялся от мРНК, прежде чем заканчивал свою работу. Я был хорошо знаком с этим явлением: при использовании кДНК для изучения рецепторов адреналина я потерял так часть гена с одного из концевых участков клона.
Другим источником моего вдохновения был Кэнъити Мацубара, директор Института молекулярной и клеточной биологии Осакского университета, руководитель японской программы расшифровки генома человека и советник Монбусё (Министерства образования, науки и культуры Японии). Оба ученых были убеждены, что секвенирование полноразмерных клонов кДНК станет основной частью, а возможно, даже альтернативой всей работы по секвенированию генома, несмотря на то, что данный вариант был категорически отклонен американскими и британскими экспертами. И тут возникли еще и иного рода осложнения. Уотсон, считая, что богатая Япония паразитирует на исследованиях генома, финансируемых другими странами, в раздражении написал Мацубаре письмо с угрозой прекратить делиться с ним результатами исследований, причем в таких выражениях, что в прессе заговорили о «войне генов человека»{23}
. «Если начнется война, я буду с ним воевать, – заявил Уотсон. – Слюнтяям никогда ничего не добиться в жизни».Во время полета домой я только и думал, что о развиваемой в Японии методике секвенирования полноразмерной кДНК. А также о том, как легко было бы изучать геном человека, будь все клоны кДНК выделены и секвенированы. А ведь мне понадобилось долгих десять лет, чтобы обнаружить один-единственный ген, только один клон кДНК. Думал я и о том, каким неэффективным оказался метод дробовика для прочтения кода всего лишь тысячи или около того геномных последовательностей, и всё – чтобы найти всего один ген, или даже лишь его часть. А еще – о том, как трудно найти соответствующий клон кДНК, чтобы доказать существование этого гена.
И вдруг, на высоте 11,5 тысяч метров над Тихим океаном, меня осенило: я использовал правильную методику секвенирования, но не той ДНК! Что, если применить быстрый метод случайного секвенирования (метод дробовика) к клонам кДНК? Что произойдет, если просто случайно выбрать клон кДНК и секвенировать его за один проход? Мои секвенаторы одновременно прочитывали около 400 пар оснований генетического кода – более чем достаточно, чтобы найти соответствие в геномной базе данных. Это было подобно открытию алфавитного указателя к каталогу генов человека.
Если данная последовательность получена из клона кДНК, изготовленного из нестойких мРНК мозга человека, то в ней содержится ключевая информация: (а) эта последовательность является частью реального, экспрессивного гена, и (б) этот ген имеет важное значение для функции мозга. Для сравнения – последовательности из генома практически неинформативны. Если бы я перешел на секвенирование тысячи случайно выбранных клонов кДНК, то смог бы обнаружить сотни генов для каждого клона, определенного методом традиционного геномного секвенирования. Я так воодушевился этой идеей, что с трудом дождался возвращения домой и постановки решающего эксперимента.
Уже на следующее утро я собрал в лаборатории своих ведущих сотрудников. Я был уверен, что они разделят мой энтузиазм по поводу новой идеи, но меня встретила стена скепсиса и сомнений. В итоге Маккомби и все остальные заявили, что из моей «сенсационной» идеи, скорее всего, ничего не получится и все кончится тем, что ее придется финансировать из средств на секвенирование генома. Они приводили те же аргументы, что и другие критики метода кДНК.
Согласно современной теории, для подавления любого сигнала генов с низким уровнем экспрессии достаточно лишь небольшого количества генов с высоким уровнем экспрессии. Любая обнаруженная нами матричная РНК, скорее всего, будет соответствовать этим доминантным генам. Но хотя этот аргумент имеет смысл для некоторых тканей, его вряд ли можно отнести к человеческому мозгу, функционирование которого и сама мыслительная деятельность зависит от огромного количества генов, причем некоторых с очень низким уровнем экспрессии. Исследования ученых из Клиники имени Скрипса показали, что до половины всех генов человека действуют в головном мозге.