Читаем Рассказы о биоэнергетике полностью

Невероятно, чтобы такая химическая реакция происходила в одну стадию — это потребовало бы одновременного взаимодействия всех четырех веществ, написанных в левой части уравнения. Поэтому приходится предположить, что процесс протекает с участием фермента в несколько этапов. Например:

АН2 + фермент -> АН2 • фермент.

АН2 • фермент + В -> А - фермент + ВН2

А - фермент + Н3РО4 -> А - фосфат + фермент + Н2О

А • фосфат + АДФ -> А + АТФ.

Именно так образуется АТФ при брожении или гликолизе, «подсобных» механизмах энергообеспечения, включающихся в условиях нехватки основных энергетических ресурсов: у растений - света, у животных и бактерий — кислорода или окисляемых кислородом веществ.

Ложная аналогия

В общем-то неудивительно, что механизм образования АТФ при дыхании и фотосинтезе вначале стремились объяснить по аналогии с уже изученными к тому времени брожением и гликолизом. Казалось, замени бродильный фермент на дыхательный или фотосинтетический, и та же система реакций будет образовывать АТФ за счет световых квантов или питательных веществ, сжигаемых кислородом.

Эта точка зрения, названная «химической схемой», стала общепринятой концепцией биоэнергетики в 50—60-е годы. В ее основу были положены хорошо известные факты, свидетельствовавшие о ключевой роли окислительных ферментов в дыхательном и фотосинтетическом синтезе АТФ. Но что это за роль?

Казалось бы, ясно: катализ окислительных реакций и их сопряжение с синтезом АТФ. Поэтому во многих лабораториях предпринимались отчаянные усилия заставить ферменты дыхания и фотосинтеза реагировать с АДФ и фосфатом, как того требовала схема.

Биоэнергетики шли дорогой, уже пройденной при изучении брожения. Сперва разрушали клетку, потом из множества внутриклеточных ферментов выделяли тот, который катализировал нужную окислительную реакцию. И наконец, к раствору очищенного фермента добавляли восстановитель, окислитель, АДФ и фосфат и смотрели, не получится ли АТФ.

Так вот, АТФ не получался!

Напрасно искусные экспериментаторы составляли всевозможные смеси белков, субстратов и солей, варьируя до бесконечности условия проведения реакции. С легкостью удавалось воспроизвести в пробирке окислительный процесс, но освобождающаяся энергия превращалась в тепло, вместо того чтобы использоваться для синтеза АТФ. Сообщения о синтезе АТФ в растворе дыхательных ферментов всегда оказывались в конце концов случайной ошибкой или преднамеренной фальсификацией, как это было, например, с Уэбстером.

В то же время более сложные системы, сохранявшие черты надмолекулярной организации биологических объектов: кусочки тканей, клетки, митохондрии и хлоропласты — или даже образующиеся при их разрушении ультразвуком мельчайшие пузырьки, окруженные мембраной, - все они в определенных условиях образовывали АТФ. Но стоило изменить условия, и даже на этих сложных объектах дыхание утрачивало связь с синтезом АТФ.

Уже первые исследователи дыхательного синтеза АТФ обратили внимание на ту необычайную легкость, с которой фосфорилирование ускользает, а дыхание переключается на «холостой ход». Сопряжение дыхания с фосфорилированием обнаружил Владимир Александрович Энгельгардт в 1930 году. А спустя несколько лет другой Владимир Александрович, Белицер, описал условия, когда дыхание отключалось от фосфорилированил и протекало без образования АТФ, несмотря на высокую скорость окислительной реакции. Так было открыто явление, названное разобщением дыхания и фосфорилирования. Именно этот факт оказался камнем преткновения для химической схемы биоэнергетики.

Парадокс веществ-разобщителей

Тот факт, что окисление может быть отключено от фосфорилирования, впервые описан при изучении брожения. Если сбраживать сахар в среде, где фосфат (Н3РО4) заменен на арсенат (H3AsO4), то брожение идет с большей скоростью, но без образования АТФ. Подобным образом действует арсенат и на дыхание: в присутствии арсената система дыхания перестает запасать энергию в форме АТФ. Именно арсенат был первым разобщителем дыхания и фосфорилирования в опытах В. Белицера. Казалось бы, это наблюдение лишь подчеркнуло еще раз сходство механизмов дыхания и брожения, чего и требовала химическая схема.

Осложнения начались с 1948 года, когда Ф. Липман неожиданно обнаружил, что дыхание разобщается и таким веществом, как динитрофенол, причем его требуется гораздо меньше, чем арсената. В отличие от арсената динитрофенол совсем непохож на фосфат. Фермент может принять арсенат за фосфат, но чтобы он перепутал фосфат- с динитрофенолом?.. Кстати, динитрофенол не действовал на брожение, и это могло бы зародить сомнения в сходстве механизмов дыхательной и бродильной энергетики.

Несколько лет эффект Липмана считали одним из курьезов, которыми не так уж бедна биохимия. Однако затем последовали наблюдения, показавшие, что разобщить дыхание и синтез АТФ можно не только динитрофенолом, но и салициловой кислотой, дикумаролом, перфторпинаколом, производными бензимидазола и фенилгидразона.

Перейти на страницу:

Похожие книги

Глаз разума
Глаз разума

Книга, которую Вы держите в руках, написана Д. Хофштадтером вместе с его коллегой и другом Дэниелом Деннеттом и в «соавторстве» с известными мыслителями XX века: классическая антология эссе включает работы Хорхе Луиса Борхеса, Ричарда Доукинза, Джона Сирла, Роберта Нозика, Станислава Лема и многих других. Как и в «ГЭБе» читателя вновь приглашают в удивительный и парадоксальный мир человеческого духа и «думающих» машин. Здесь представлены различные взгляды на природу человеческого мышления и природу искусственного разума, здесь исследуются, сопоставляются, сталкиваются такие понятия, как «сознание», «душа», «личность»…«Глаз разума» пристально рассматривает их с различных точек зрения: литературы, психологии, философии, искусственного интеллекта… Остается только последовать приглашению авторов и, погрузившись в эту книгу как в глубины сознания, наслаждаться виртуозным движением мысли.Даглас Хофштадтер уже знаком российскому читателю. Переведенная на 17 языков мира и ставшая мировым интеллектуальным бестселлером книга этого выдающегося американского ученого и писателя «Gödel, Escher, Bach: an Eternal Golden Braid» («GEB»), вышла на русском языке в издательском Доме «Бахрах-М» и без преувеличения явилась событием в культурной жизни страны.Даглас Хофштадтер — профессор когнитивистики и информатики, философии, психологии, истории и философии науки, сравнительного литературоведения университета штата Индиана (США). Руководитель Центра по изучению творческих возможностей мозга. Член Американской ассоциации кибернетики и общества когнитивистики. Лауреат Пулитцеровской премии и Американской литературной премии.Дэниел Деннетт — заслуженный профессор гуманитарных наук, профессор философии и директор Центра когнитивистики университета Тафте (США).

Даглас Р. Хофштадтер , Дуглас Роберт Хофштадтер , Дэниел К. Деннет , Дэниел К. Деннетт , Оливер Сакс

Биология, биофизика, биохимия / Психология и психотерапия / Философия / Биология / Образование и наука