Читаем Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт полностью

Разберись в Data Science. Как освоить науку о данных и научиться думать как эксперт

Перед вами исчерпывающее руководство по основам Data Science. С помощью него вы сможете научиться мыслить статистически и понимать, какую роль в вашей работе играет аналитика, пользоваться языком науки о данных, избегать распространенных ошибок при работе с ними и, наконец, разобраться в полезных инструментах, которые используют эксперты.

Алекс Дж. Гатман , Джордан Голдмейер

Прочая компьютерная литература / Книги по IT18+

Алекс Дж. Гатман, Джордан Голдмейер

Разберись в Data Science

Как освоить науку о данных и научиться думать как эксперт

Jordan Goldmeier, Alex J. Gutman

BECOMING A DATA HEAD: How to Think, Speak and Understand Data Science, Statistics and Machine Learning

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

All Rights Reserved. This translation published under license with the original publisher John Wiley & Sons, Inc.


* * *

Посвящается моим детям Элли, Уильяму и Эллен.

Элли было три года, когда она узнала, что ее папа – «доктор».

Озадаченно посмотрев на меня, она сказала: «Но ведь ты не помогаешь людям…»

Памятуя об этом, я также посвящаю эту книгу вам, читатель.

Надеюсь, что она вам поможет.

– Алекс

Посвящается Стивену и Мелиссе.

– Джордан


Предисловие

Книга «Разберись в Data Science» вышла очень своевременно, учитывая текущую ситуацию с данными и аналитикой в организациях. Давайте кратко пробежимся по последним событиям. Начиная с 1970-х годов лишь немногие передовые компании эффективно использовали данные и аналитику для принятия решений и обоснования своих действий. Большинство игнорировало этот ценный ресурс или не придавало ему особого значения.

В 2000-х годах ситуация стала меняться, и компании начали понимать, как они могут изменить свою ситуацию с помощью данных и аналитики. К началу 2010-х годов интерес стал смещаться в сторону «больших данных», которые изначально появились в интернет-компаниях, а затем распространились по всей экономике. В связи с возросшим объемом и сложностью данных в компаниях возникла роль «дата-сайентиста», опять же, сначала в Силиконовой долине, а затем повсюду.

Однако как только фирмы начали приспосабливаться к большим данным, в период с 2015 по 2018 год акцент во многих фирмах снова сместился, на этот раз в сторону искусственного интеллекта. Сбор, хранение и анализ больших данных уступили место машинному обучению, обработке естественного языка и автоматизации.

В основе этих быстрых сдвигов фокуса лежал ряд допущений относительно данных и аналитики, распространенных внутри организаций. Я рад сообщить, что книга «Разберись в Data Science» разрушает многие из них и делает это весьма своевременно. Многие люди, внимательно наблюдающие за этими тенденциями, уже начинают признавать, что эти допущения направляют нас по непродуктивному пути. В оставшейся части этого предисловия я опишу пять взаимосвязанных допущений и то, как изложенные в этой книге идеи обоснованно опровергают их.


Допущение 1. Аналитика, большие данные и ИИ – совершенно разные явления.

Многие полагают, что «традиционная» аналитика, большие данные и ИИ – это отдельные явления. Однако авторы книги «Разберись в Data Science» справедливо считают, что эти вещи тесно связаны друг с другом. Все они требуют статистического мышления, использования традиционных аналитических подходов, вроде регрессионного анализа, а также методов визуализации данных. Предиктивная аналитика – это, по сути, то же самое, что и контролируемое машинное обучение. Кроме того, большинство методов анализа данных работают с наборами данных любого размера. Короче говоря, главный по данным может эффективно работать во всех трех областях, так что заострять внимание на различиях между ними не очень продуктивно.


Допущение 2. В этой песочнице могут играть только дата-сайентисты.

Мы часто прославляли дата-сайентистов, полагая, что только они способны эффективно работать с данными и аналитикой. Тем не менее в настоящее время зарождается важная тенденция к демократизации этих идей, и все больше организаций расширяют полномочия «гражданских специалистов по работе с данным». Автоматизированные инструменты машинного обучения упрощают создание моделей, которые отлично справляются с прогнозированием. Разумеется, нам все еще нужны профессиональные дата-сайентисты для разработки новых алгоритмов и проверки работы гражданских специалистов, занимающихся сложным анализом. Однако организации, которые демократизируют занятие аналитикой и наукой о данных, привлекая к этому «любителей», способны значительно расширить использование этих важных возможностей.


Допущение 3. Дата-сайентисты – это единороги, обладающими всеми необходимыми навыками.

Перейти на страницу:

Похожие книги

Криптография и свобода
Криптография и свобода

Слово криптография означает тайнопись.Российская криптография имеет многовековую историю, начинающуюся с указов Петра I о «черных кабинетах». До середины 80-х годов XX века криптография в России использовалась только для военных, дипломатических и правительственных линий связи и была строго засекречена. Даже употребление слов «криптография», «шифры», «ключи к шифрам» в открытых публикациях было недопустимо. Но в мире быстро назревала потребность в гражданской криптографии, стремительно развивались информационные технологии, стали появляться компьютерные сети, Интернет, денежные электронные расчеты. Для этого требовались надежные и общедоступные криптографические методы защиты информации.Была ли Россия готова к появлению гражданской криптографии? И да, и нет.Да, потому что еще с советских времен в России существовала прекрасная криптографическая школа и высококлассные специалисты-криптографы, которые долгое время на равных конкурировали с американским Агентством Национальной Безопасности и обеспечивали гарантированную защиту военных, дипломатических и правительственных линий связи.Нет, потому что синдром тотальной секретности всего, что касалось криптографии, восходил к сталинским временам и мало изменился за прошедшие десятилетия. А в подобных условиях очень хорошо себя чувствуют многочисленные чиновники от криптографии.В 1992 году случился кризис: поток фальшивых авизо захлестнул Центральный Банк России и грозил обрушить всю финансовую систему. Потребовалась срочная помощь криптографов: в кратчайшие сроки создать, наладить и запустить в эксплуатацию систему криптографической защиты телеграфных и почтовых авизо в такой огромной структуре, как ЦБ РФ.Эта задача была выполнена за три месяца – неимоверно короткий срок.В России появился первый реальный пример гражданской криптографии.О том, что представляла из себя советская криптографическая школа, о ее специалистах и начальниках, о царившей тогда в стране атмосфере, о том, как была создана система защиты для Центрального Банка России, и, наконец, о том, почему же в России так трудно пробивает себе дорогу гражданская криптография – в этой книге.

Михаил Евгеньевич Масленников , Михаил Масленников

Биографии и Мемуары / Математика / Прочая компьютерная литература / Образование и наука / Книги по IT