Читаем Разберись в Data Science полностью

В предыдущей главе мы говорили о контролируемом обучении с помощью моделей регрессии, которые позволяют предсказывать численные значения (вроде объема продаж) путем подгонки модели к набору признаков. Но что, если вам требуется предсказать конкретный результат? Например, захочет ли человек, обладающий определенным набором демографических характеристик, купить книгу о данных? Если вы когда-нибудь задавались вопросом о том, как компании оценивают вероятность того, что вы щелкнете по тому или иному рекламному объявлению, купите продукт (и какой именно), не сможете выплатить кредит, взятый на покупку автомобиля, пройдете собеседование или чем-нибудь заболеете, то эта глава для вас.

В таких задачах, где нужно предсказать категориальную переменную (то есть метку), необходимо использовать модели классификации.

Введение в классификацию

Модели, предсказывающие два варианта, называются моделями бинарной классификации. Модели, используемые для предсказания множества классов, называются моделями многоклассовой классификации[92]. Оценка вероятности того, что человек не сможет погасить автокредит, – пример задачи бинарной классификации (да/нет), а предсказание того, какую машину купит человек («Honda», «Toyota», «Ford» и так далее), – пример задачи многоклассовой классификации. Чтобы не усложнять, мы сосредоточимся на задачах бинарной классификации. Просто имейте в виду, что дополнительные классы логично продолжают те темы, которые мы обсудим в этой главе.

Результаты применения некоторых моделей классификации часто делятся на «положительные» или «отрицательные». Как вы помните, научная проверка осуществляется в форме утверждения, а значит, вы должны истолковывать положительное и отрицательное наблюдение как означающее «да» и «нет» соответственно. Это позволяет отделить наблюдения, демонстрирующие действие (щелчок по кнопке, покупка товара, дефолт по кредиту, наличие заболевания), от тех, которые этого не делают. В других случаях – например, при предсказании принадлежности избирателя к политической партии – вам следует четко определить, какой класс является «положительным», а какой «отрицательным», чтобы избежать путаницы. Например, то, что вы определяете принадлежность избирателя к демократам или республиканцам как положительную или отрицательную в своей модели, – не оценка этой принадлежности, а ее произвольное обозначение. Как главный по данным вы должны убедиться в том, что все члены команды одинаково понимают используемые в модели обозначения.

Чему вы научитесь

В этой главе мы будем использовать набор данных о человеческих ресурсах для описания следующих моделей классификации:

– логистическая регрессия;

– деревья решений;

– ансамблевые методы.


Логистическая регрессия[93] и деревья решений чаще всего изучаются в рамках курсов по науке о данных и широко используются в программном обеспечении. Простота применения и интерпретируемость делают их идеальным выбором для решения некоторых задач. Однако, как и все прочие алгоритмы, описанные в этой книге, они не лишены недостатков.

Мы также познакомим вас с ансамблевыми методами, которые постепенно становятся новым стандартом для специалистов по работе данных, особенно для участников соответствующих соревнований[94].

Во второй половине этой главы мы более подробно рассмотрим проблему утечки данных и переобучения. Обсуждению точности мы посвятим целый раздел в конце главы, поскольку понимание этого термина (в контексте данных) требует рассмотрения ряда нюансов. А мы хотим уберечь вас от самых распространенных ошибок.

Постановка задачи классификации

Представьте, что каждое лето сотни студентов, изучающих науку о данных, подают заявки на стажировку в вашей компании. Просматривать все эти заявки вручную крайне утомительно. Нельзя ли как-то автоматизировать этот процесс?

К счастью, у вашей компании есть набор исторических данных, которые можно использовать для обучения модели, – информация о каждом соискателе и метка «да/нет», говорящая о том, был ли он приглашен на собеседование. Используя исторические данные и такой инструмент, как логистическая регрессия, вы могли бы разработать прогностическую модель, которая использует содержащуюся в заявке информацию в качестве входных данных, например, средний балл, год обучения, специализация, количество внеклассных занятий, и сообщает о том, стоит ли предлагать соискателю пройти собеседование. Если она окажется эффективной, это избавит вас от необходимости просматривать резюме вручную.

Как можно решить эту задачу? Для начала познакомимся с логистической регрессией.

Логистическая регрессия

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных