Читаем Разберись в Data Science полностью

На примере с Джорданом и его любимыми хот-догами легко увидеть недостаток метода мешка слов. Фраза из двух слов «любит хот-доги» по смыслу противоположна фразе «ненавидит хот-доги», однако при использовании метода мешка слов контекст и порядок слов игнорируются. В данном случае могут помочь N-граммы. N-грамма – это последовательность из N-слов, поэтому 2-граммы (формально называемые биграммами) для фразы «Джордан любит хот-доги, но ненавидит гамбургеры» будут такими: {Джордан любит: 1, любит хот-доги: 1, ненавидит гамбургеры: 1, но ненавидит: 1, хот-доги, но: 1}.

Данное расширение метода мешка слов добавляет контекст, необходимый для различения фраз из одинаковых слов, но расположенных в разном порядке. Токены биграмм часто добавляются в мешок слов, что еще сильнее увеличивает размер и разреженность матрицы «документ-термин». С практической точки зрения это означает необходимость хранить большую (широкую) таблицу, содержащую относительно небольшой объем информации. Мы добавили несколько биграмм в табл. 11.1 и получили табл. 11.2.

О том, следует ли отфильтровывать биграммы со стоп-словами, ведутся споры, поскольку такой подход может привести к потере контекста. В некоторых программах слова «мой» и «ваш» считаются стоп-словами, однако смысл биграммных фраз «мое предпочтение» и «ваше предпочтение» при отбрасывании стоп-слов полностью исчезает. Это еще одно решение, которое должны принять ваши специалисты при анализе текстовых данных. (Вероятно, вы уже начинаете понимать, насколько сложна текстовая аналитика.)


Табл. 11.2. Пополнение «мешка слов» биграммами. Получившаяся в результате матрица «документ-термин» является очень большой


Однако после такой подготовки обобщение текста можно произвести путем простого подсчета. Такие веб-сайты, как Tripadvisor.com, применяют эти подходы и предоставляют пользователям возможность быстро находить отзывы по часто упоминаемым словам или фразам. Например, на сайте вашего местного стейк-хауса среди предлагаемых поисковых запросов вы можете встретить такие биграммы, как «запеченный картофель» или «идеально приготовленный».

Векторное представление слов

С помощью метода мешка слов и N-грамм можно обнаружить сходства между документами. Если несколько документов содержат похожие наборы слов или N-грамм, вы можете предположить, что предложения связаны между собой (в разумных пределах, конечно: помните о любви/ненависти Джордана к хот-догам). В этом случае строки в матрице «документ-термин» будут численно похожи.

Но как можно численно определить то, какие слова в словаре – не документы, а именно слова – связаны между собой?

В 2013 году компания Google проанализировала миллиарды пар слов (два слова, находящихся в непосредственной близости друг от друга в предложении) в своей огромной базе данных статей Google News[110]. Проанализировав частоту встречаемости пар слов, – например, (вкусная, говядина) и (вкусная, свинина) встречались чаще, чем (вкусная, корова) и (вкусная, свинья), – специалисты компании смогли сгенерировать так называемое векторное представление слов, то есть представление слов в виде списка чисел (или векторов). Если слова «говядина» и «свинина» часто сопровождаются словом «вкусная», то математически они будут представлены как похожие в том элементе вектора, который связан с вещами, обычно описываемыми как «вкусные», то есть с тем, что мы, люди, называем едой.

Чтобы объяснить, как это работает, мы будем использовать небольшое количество пар слов (компания Google использовала миллиарды). Представьте, что при просмотре статьи в местной газете мы обнаруживаем следующие пары слов: (вкусная, говядина), (вкусный, салат), (корм, корова), (говядина, корова), (свинья, свинина), (свинина, салат), (салат, говядина), (есть, свинина), (корова, ферма) и так далее. (Придумайте еще несколько пар слов по аналогии.) Каждое слово попадает в словарь: {говядина, корова, вкусный, ферма, корм, свинья, свинина, салат}[111].

Слово «корова», например, может быть представлено в виде вектора, длина которого соответствует длине приведенного выше словаря, со значением 1 на месте слова «корова» и значением 0 на месте всех остальных слов: (0, 1, 0, 0, 0, 0, 0, 0). Этот вектор представляет собой входные данные для алгоритма контролируемого обучения и сопоставляется с соответствующим выходным вектором (длина которого также соответствует длине словаря). В нем содержатся вероятности появления других слов из словаря рядом с входным словом. Таким образом, входному слову «корова» может соответствовать выходной вектор (0,3, 0, 0, 0,5, 0,1, 0,1, 0, 0), говорящий о том, что слово «корова» сопровождалось словом «говядина» в 30 % случаев, словом «ферма» – в 50 % случаев, а словами «корм» и «свинья» – в 10 % случаев.

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных