Читаем Разберись в Data Science полностью

Теперь представьте себе базу данных, включающую несколько тысяч примеров – рукописных цифр от 0 до 9, отличающихся стилем написания. Люди, включая детей, способны прочитать и распознать эти цифры без особых усилий. Но как компьютер может осуществить классификацию изображений?


Рис. 12.5. Здесь показано, как изображение в градациях серого «воспринимается» компьютером и как эти данные подаются на вход глубокой нейронной сети. Более темные оттенки в выходном слое указывают на наиболее вероятное предположение


Мы могли бы применить к этому набору данных алгоритм глубокого обучения, способный обучаться на тысячах рукописных цифр. Нейроны скрытого слоя могли бы «активироваться» в том случае, если, скажем, в цифре присутствовала петля (0, 6, 8 или 9), вертикальная (1, 4) или горизонтальная линия (2, 4, 7) или их комбинация.

Здесь мы снова схитрили, чтобы дать вам представление о том, что могут представлять нейроны. Однако, как уже говорилось, скрытые слои зачастую очень трудно интерпретировать, и они могут создавать представления, не имеющие непосредственно воспринимаемого смысла. Но концептуальная идея остается прежней. Внутренние нейроны действительно способны выявлять закономерности в написании цифр, но они имеют только математический, а не визуальный смысл.

Сверточные нейронные сети

Теперь давайте рассмотрим более продвинутый способ анализа изображений с помощью сверточных нейронных сетей, которые используются исследователями для построения систем классификации цветных и крупных изображений, состоящих из большого количества пикселов.

Мы начнем с объяснения того, как компьютер «видит» цветное изображение. Каждый пиксел цветного цифрового изображения состоит из трех цветов – красного, зеленого и синего. Мы называем их цветовыми каналами. Красный канал содержит матрицу значений от 0 (красный отсутствует) до 255 (красный); то же самое касается зеленого и синего каналов. Таким образом, вместо одной матрицы чисел мы имеем три, как показано на рис. 12.6.


Рис. 12.6. Цветные изображения представлены в виде трехмерных матриц, содержащих значения пикселов красного, зеленого и синего цветов


Соответственно, 10-мегапиксельное изображение будет содержать 30 миллионов значений (значение красного, синего и зеленого цветов для каждого из 10 миллионов пикселов). И если эти 30 миллионов входных данных будут поданы на вход нейронной сети со скрытым слоем, состоящим из 1000 нейронов, то вашему компьютеру потребуется изучить целых 30 миллиардов весовых параметров[134]. Если у вас нет доступа к самому мощному в мире суперкомпьютеру (и даже если бы он у вас был), вам лучше придумать более эффективный способ решения этой задачи.

Исследователи и специалисты по глубокому обучению делают это с помощью процесса, называемого сверткой. Свертка – это математический аналог анализа изображения с помощью ряда увеличительных стекол, каждое из которых предназначено для разных целей. Перемещая увеличительное стекло по изображению слева направо и сверху вниз, вы заметите множество локальных паттернов: линий, углов, закругленных краев, текстур и так далее (рис. 12.7). Свертка осуществляет это математически, то есть выполняет вычисления с использованием локализованного набора значений пикселов, находя края (например, значения 0 рядом с большими значениями) и другие паттерны. Затем она «объединяет» их для нахождения наиболее выразительных отличительных черт, чтобы уменьшить количество участвующих в процессе чисел.


Рис. 12.7. Процесс свертки подобен использованию серии увеличительных стекол для выявления различных форм на изображении, которые подаются в скрытые слои нейронной сети для классификации


После обнаружения локальных паттернов (вроде горизонтальных или диагональных краев) с помощью свертки нейроны скрытого слоя начинают соединять важные края (в математическом смысле) и отфильтровывать информацию, не имеющую отношения к целевому выходу. При этом данные обрабатываются так, что сеть научается определять, есть ли на фотографии дети, а также находить различия в лицах. А в случае с беспилотными автомобилями – отличать припаркованные автомобили от движущихся, пешеходов от строителей, а знак «стоп» от знака «уступи дорогу».

Процесс свертки не только уменьшает количество значений, поступающих в уже знакомую вам структуру нейронной сети (никто не захочет вычислять миллиарды параметров, если этого можно избежать), но и «ищет» похожие признаки на изображениях. В отличие от структурированных наборов данных, признаки в которых имеют фиксированное местоположение в столбцах, признаки на изображениях необходимо не только проанализировать, но и обнаружить. Именно поэтому алгоритмы социальных сетей способны находить ваше лицо на изображении независимо от того, где вы прячетесь.

Глубокое обучение для обработки языка и последовательностей

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных