Читаем Разумные машины<br />(Автоматы) полностью

Изобретение робота-компаса привело к появлению ряда других роботов, тесно связанных с ним и имеющих большое значение в мореходном деле. К ним в первую очередь относится курсограф — аппарат, непрерывно записывающий на бумажной ленте курс корабля, то есть направление, по которому он плывет. Курс математически определяют углом между северным направлением меридиана места наблюдения и направлением движения корабля.

Курсограф по внешности представляет собою небольшой металлический ящик, укрепляемый на стенке штурманской рубки. В верхней части крышки курсографа находится круглый прорез, края которого разделены на градусы. Вверху стоит нуль. Счет градусов идет по движению часовой стрелки. Внутри прореза помещается стрелка в виде кораблика. Эта стрелка показывает курс корабля в каждый момент его движения. В нижней части крышки курсографа имеется окно, через которое видна широкая полоса бумаги, разграфленная на клетки.


Внешний вид курсографа. Вверху в круглом отверстии виден диск со стрелкой в виде кораблика. Внизу в окне — движущаяся лента бумаги, на которой два пера записывают курс корабля. Правое перо отмечает градусы курса.


Курсограф со снятой крышкой. Видно внутреннее устройство: диск с корабликом, движущаяся лента бумаги, самопишущие перья и другие части.


На поперечных линиях указаны градусы, на продольных — часы и минуты. Бумага приводится в медленное движение часовым механизмом. Над бумагой помещены два пера с чернилами. Каждое из них чертит на бумаге непрерывную линию. Правая линия и представляет курс корабля в градусах.

Курсограф работает автоматически. Это робот. Внутри его коробки скрыт электромоторчик-репитер такого же типа, как и у компасов-репитеров. Этот моторчик электрически связан с гирокомпасом и в точности воспроизводит его показания с помощью стрелки-кораблика и самопишущих перьев.


Кормовые (задние) весла на древнегреческом корабле, служившие для управления им.


Управление рулем на корабле XVI века. 1 — верхняя палуба; 2 — ворот, свободно скользящий в шаровом шарнире, 3 — шар, служащий универсальным шарниром для ворота, 4 — руль; 5 — румпель; 6 — стопор; 7 — бимс, поддерживающий румпель; 8 — железный шкворень; 9 — железная палуба; 10 — батарейная палуба.


Гирокомпас позволил также полностью автоматизировать управление кораблем, идущим по прямой линии, точнее — с неизменным курсом.

Мысль об использовании волчка для управления корабельным рулем возникла давно, еще в конце прошлого века, когда Обри применил гироскоп Фуко для мин Уайтхеда. Но тогда осуществить ее нельзя было из-за того, что волчок гироскопа, сохраняя положение своей оси в пространстве, непрерывно меняет его относительно Земли. В торпедах, движение которых продолжается лишь несколько десятков секунд, перемещение оси волчка почти незаметно — оно лишь незначительно сказывается на направлении пути торпеды. Не то получается на корабле, идущем по заданному курсу многие часы, а иногда и несколько суток. Здесь гироскоп ничего поделать не может.


Спаренные штурвалы, применявшиеся для управления рулем на больших судах в начале XIX века.


Лишь изобретение гирокомпаса дало техническую возможность для превращения волчка в рулевого. Такой механизм был сконструирован за последние пятнадцать лет и получил название гирорулевого. Это высшее достижение техники в деле управления кораблем, завершающее развитие рулевого дела на протяжении по крайней мере пяти тысяч лет.

Самый древний способ поворачивать корабль в ту или другую сторону состоял в действии веслами, расположенными в кормовой части. Такие рулевые весла применяли, например, египтяне еще за полторы тысячи лет до начала нашего летоисчисления.

Около тысячи лет тому назад был изобретен корабельный руль. Управление рулем на средневековых парусниках было делом тяжелым и требовало иногда усилий нескольких человек.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже