Очень ловко работают электросветовые обогатители руд. Первые опыты с такими роботами были произведены в 1928 г. в Мичиганском колледже горного дела и технологии. Автомат состоял из фотоэлектрической установки и конвейера-отборщика.
Из питающей воронки-бункера руда (в данном случае золотоносный песок) подается на конвейер. Поперек конвейера располагается несколько фотоэлектрических элементов. Их число зависит от ширины конвейера. Руда непосредственно под элементами освещается сильной электрической лампой. Далее над конвейером помещено несколько всасывающих трубочек. Их число равно числу фотоэлементов. Трубочки эти при помощи магнитов могут пригибаться к ленте конвейера и засасывать песок с золотыми крупинками. Кажется, что они клюют его, как куры зерно. Трубочки соединены с большим закрытым со всех сторон чаном, из которого насосом выкачивается воздух. В этот чан и попадает «проглоченный» трубочками песок. Этот песок будет более богат золотом, чем тот песок, который попадает на конвейер.
Работа электросветового обогатителя руды оказалась настолько удовлетворительной и выгодной, что теперь его уже применяют практически на разработках золотоносных и алмазных россыпей.
Помощник кочегара, сидящий в трубе
Что это за странный помощник кочегара, которому понадобилось сидеть в фабричной трубе?
А это все тот же фотоэлектрический элемент, на который возложена задача следить за правильным и полным сгоранием топлива. При хорошем сгорании топлива дыма не получается. Дым ведь и есть не что иное, как несгоревший углерод топлива.
Фотоэлектрический элемент в трубе следит за дымом. Основная его часть устроена так же, как и в автоматическом тушителе пожара. На противоположных концах диаметра трубы в особых углублениях помещены источник ультрафиолетовых лучей (они сильно поглощаются дымом) и фотоэлектрический элемент. С этим элементом связан регулятор подачи топлива в топку котла.
Как только в трубе появится дым в большем количестве, чем это полагается, робот тотчас же уменьшает подачу топлива.
Прибор, находящийся в трубе, измеряет степень непрозрачности проходящего через него воздуха. Такие приборы в физике называются
Опасиметры находят различные применения.
В только что описанном случае опасиметр превратился в неутомимого, очень добросовестного кочегара. В виде автомата-огнетушителя опасиметр служит пожарником.
Робот-химик
Но опасиметр может стать и химиком.
В различных химических производствах и в лабораторной практике химикам часто приходится определять количество кислот или щелочей в различных водных растворах. С этой целью вливают в исследуемый раствор каплю лакмусовой настойки. От этого жидкость в стакане окрашивается в красный цвет, если она содержит кислоту, и в синий при наличии щелочи.
Предположим, что исследуемая жидкость — кислота и окрасилась, следовательно, в красный цвет. Тогда в стакан с этой жидкостью начинают приливать по каплям раствор щелочи. Щелочь, как говорят химики, нейтрализует кислоту, превращая ее в соль и воду. Когда вся кислота будет нейтрализована, жидкость из красной станет светло-фиолетовой. Прибавка только одной капли щелочи к этой жидкости изменит ее цвет в синий, а прибавка одной капли кислоты вызовет ее покраснение.
Вместо лакмуса можно прилить к кислоте каплю фенолфталеина. Фенолфталеин бесцветен сам по себе и остается бесцветным в кислоте. В щелочном же растворе фенолфталеин окрашивается в красный цвет. Приливая щелочь к кислоте, можно дойти до такого момента, когда прибавка только одной капли щелочи превратит жидкость из бесцветной в красную. При обратном вливании в красноокрашенную щелочь кислоты наступает такой момент, когда жидкость обесцвечивается.
Зная количество прилитой щелочи, можно легко определить, сколько кислоты было в исследуемом растворе. Такой способ определения количества кислоты или щелочи называется титрованием.
Чего-либо сложного в титровании нет. Однако, это довольно кропотливое дело, отнимающее у химика много времени. Возникло желание передать эту работу автомату. На помощь пришел опасиметр.