Читаем Релейная защита в распределительных электрических сетях полностью

Защиты необходимо отстраивать от максимальных токов в местах их установок независимо от направления действия защиты и направления передачи мощности для исключения ложного срабатывания при повреждениях цепей напряжения защиты [2]. Если при этом чувствительность защиты недостаточна, то допускается использовать в качестве расчетного ток, соответствующий передаче мощности в направлении действия защиты.

Выдержки времени срабатывания выбираются по условию обеспечения селективности. Согласуются защиты, действующие в одном направлении. Время срабатывания защит должно нарастать ступенчато с приращением Д tпри обходе их против направления действия (см. рис. 2.16):

Здесь t C3 H1и t C3 H4— время срабатывания защит, установленных на присоединениях Н1 и Н4 соответственно.

Участок контролируемой электрической сети вблизи места установки защиты, в пределах которого реле направления мощности при КЗ может не сработать из-за недостаточной мощности на его зажимах (U

p  ->0), принято называть мертвой зоной.

Границу этой зоны можно определить, опираясь на следующие рассуждения [2]. Пусть напряжение срабатывания реле при КЗ на границе мертвой зоны равно:

Здесь I PK— значение тока в токовой катушке реле при повреждении в начале контролируемого объекта (в месте установки защиты); p— угол между векторами тока и напряжения, подведенными к реле.

При 90-градусной схеме включения реле p

= -(90°- ). Угол КЗмежду векторами тока и напряжения в первичной цепи определяется соотношением удельных реактивного ( х УД) и активного ( r УД) сопротивлений контролируемого объекта:

Первичное фазное напряжение срабатывания реле:

где k

TH— коэффициент трансформации трансформатора напряжения.

Сопротивление мертвой зоны:

Тогда протяженность мертвой зоны:

где

2.6. Дифференциальные защиты трансформаторов

Принцип действия дифференциальных защит основан на пофазном сравнении токов параллельно установленных защищаемых объектов (поперечные дифференциальные защиты)или токов до и после защищаемого объекта (продольные дифференциальные защиты).

В отличие от рассмотренных выше максимальных токовых защит (с относительной селективностью) дифференциальные защиты обладают свойством абсолютной селективности.

Дифференциальная токовая защита используется в качестве основной быстродействующей защиты трансформаторов мощностью 6,3 МВА и выше, параллельно работающих трансформаторов мощностью 4 МВ-А и выше, а также трансформаторов мощностью 1 МВ-А и выше, если токовая отсечка последних не обладает достаточной чувствительностью, а МТЗ имеет выдержку времени более одной секунды [3].

Дифференциальная защита трансформаторов имеет ряд особенностей, отличающих ее от продольных дифференциальных защит линий [2, 3, 4].

Во-первых, фазные токи до и после защищаемого трансформатора отличаются по величинеуже в нормальном режиме его работы (при отсутствии повреждений в зоне действия дифференциальной защиты). Эта ситуация практически может быть разрешена предварительным выравниванием токов в плечах защиты (то есть за ТТ на сторонах ВН и НН) за счет подбора ТТ с нужными коэффициентами трансформации. Кроме того, для реализации дифференциальной защиты промышленностью выпускаются специальные реле серий РНТ и ДЗТ, содержащие уравнительные обмотки с регулируемыми числами витков для дополнительного выравнивания токов в плечах защиты.

Во-вторых, токи на сторонах ВН и НН защищаемого трансформатора могут отличаться еще и по фазам,когда способы соединения первичных и вторичных обмоток силового трансформатора не совпадают. В этом случае выравнивание вторичных токов достигается изменением способов соединения вторичных обмоток ТТ на обратное по отношению к защищаемому трансформатору (рис. 2.23).

В-третьих, при выборе тока срабатывания дифференциальной защиты необходимо обязательно учитывать бросок тока намагничивания при включении (восстановлении питания) защищаемого силового трансформатора.

В-четвертых, при отстройке тока срабатывания защиты от тока небаланса нужно учитывать две дополнительные составляющие этого тока. Первая обусловлена неполным выравниванием действия вторичных токов при подборе коэффициентов трансформации ТТ или при вынужденном выставлении округленных значений чисел витков уравнительных обмоток. Вторая составляющая вызвана наличием регулирования напряжения трансформатора под нагрузкой (РПН).

Получили распространение следующие разновидности дифференциальных защит трансформаторов: дифференциальная токовая отсечка, дифференциальная защита без торможения и дифференциальная защита с торможением [2, 3, 4].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже