Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Отличный пример, хорошо иллюстрирующий затронутые в этом разделе темы, связан с компанией Boeing и ее самолетом модели 787. В 2012 г. компания попала в новости из-за проблем с аккумуляторами на 787{67}. Это дорого обошлось ей и в финансовом плане, и с точки зрения ущерба репутации. Во время моего выступления на одной из конференций меня спросили, не считаю ли я, что Boeing облажалась, не сумев исправить проблему с аккумуляторами до выпуска самолета на рынок. Задавший этот вопрос человек считал, что, получив в ходе тестирования все сенсорные данные, компания должна была обнаружить дефект. Я ответил, что не совсем справедливо рассматривать ситуацию под таким углом, поскольку не все так просто. Я предпочитаю считать людей или компании невиновными до тех пор, пока их вина не доказана. Задним числом может казаться, что выявить проблему с аккумуляторами было несложно, но давайте рассмотрим несколько соображений, которые противоречат такой точке зрения.

Во-первых, вполне возможно, что Boeing не собирала таких данных, которые позволили бы выявить конкретную проблему с аккумуляторами. Во-вторых, даже если компания собирала нужные данные во время тестирования, то скорее всего и проанализировала их, но не обнаружила вызывающих тревогу шаблонов. Возможно, проблема возникла только тогда, когда самолет начал эксплуатироваться в реальных условиях. Более того, даже если данные содержали информацию, позволяющую выявить проблему, это вовсе не означает, что компания облажалась. Позвольте мне объяснить, в чем дело.

Не становитесь жертвой суждений задним числом

Когда нужно проанализировать столь много данных по самым разным направлениям, следует, применив здравый смысл, воспользоваться возможностями, способными оказать самое сильное воздействие. Задокументируйте принятие решения с указанием, на чем были сосредоточены усилия, чтобы впоследствии защитить свои действия от суждений задним числом. Найти иголку в стоге сена почти невозможно. Но, когда она обнаружена, ее почти невозможно упустить.

С учетом тех объемов данных, которые генерируются мириадами датчиков на Boeing 787, невозможно исследовать каждую деталь, способную сломаться. На это попросту не хватит времени с точки зрения как рабочей силы, так и вычислительных мощностей. Инженерам и специалистам-аналитикам компании пришлось, исходя из предположений, выбирать, где сосредоточить свои усилия. Безусловно, они изучили области высокого риска. В самолете имеются компоненты, чей отказ может привести к катастрофе, такие как двигатель и шасси. Я уверен, что компания приложила много сил для анализа в этих областях. В то же время не столь страшно, если во время полета перестанет работать кнопка вызова стюардов. Эту поломку легко устранить, и она не несет никакого реального риска для экипажа или пассажиров. Проблема с аккумуляторами находится где-то посередине между этими двумя крайностями. Вполне возможно, что аккумуляторы не были сочтены источником высокого риска, чтобы уделить им пристальное внимание, притом с учетом ограниченности ресурсов и прошлого опыта.

Разумеется, возможно, что Boeing анализировала данные с аккумуляторов, и эти данные позволяли выявить проблему, но компания ее проглядела. Возможно, что Boeing действительно облажалась. Но без дополнительных фактов мы не можем знать об этом наверняка.

Отсюда вытекает урок: по мере того как организация собирает все больше данных и создает все больше аналитических процессов, специалисты-аналитики должны документировать свои процессы принятия решений. Это означает документировать не только то, что анализируется, но и то, что не анализируется и почему не анализируется. Найти иголку в стоге сена будет невозможно, пока кто-нибудь не укажет вам на нее. Но, когда вы узнаете, где находится иголка, то четко ее разглядите. Подобным же образом, когда возникла проблема с аккумуляторами в самолете, было естественным вообразить, что ее следовало выявить заранее. Документирование выбора места для сосредоточения аналитических усилий позволяет смягчить подобную критику задним числом. Проблемы часто не бывают очевидными до тех пор… пока вдруг не станут очевидными просто потому, что они возникли.

Сравнение аналитических подходов

Перейти на страницу:

Похожие книги

Антихрупкость. Как извлечь выгоду из хаоса
Антихрупкость. Как извлечь выгоду из хаоса

«Антихрупкость» – книга уникальная: она рассказывает о ключевом свойстве людей, систем и не только, свойстве, у которого до сих пор не было названия. В мире, где царит неопределенность, нельзя желать большего, чем быть антихрупким, то есть уметь при столкновении с хаосом жизни не просто оставаться невредимым, но и становиться лучше прежнего, эволюционировать, развиваться. Талеб формулирует простые правила, которые позволяют нам преодолеть хрупкость и действовать так, чтобы непредсказуемая неопределенность, этот грозный и внезапный Черный лебедь, не причинила нам вреда – и более того, чтобы эта редкая и сильная птица помогла нам совершенствоваться. Для этого следует в первую очередь осознать: мы по природе своей антихрупки – и не должны позволять кому бы то ни было лишать нас этого чудесного свойства.

Нассим Николас Талеб

Деловая литература / О бизнесе популярно / Финансы и бизнес
Управление бизнесом
Управление бизнесом

Harvard Business Review – главный деловой журнал в мире. Если вы не читали других книг из серии «HBR: 10 лучших статей», то прочтите эту, в определенном смысле саму важную. Для нее из сотен статей журнала редакторы HBR отобрали те, в которых влиятельные бизнес-эксперты рассказывают о том, как следует внедрять инновации в управление бизнесом, о роли руководителя во времена болезненных перемен; какие данные помогут распознать потребности клиента и улучшить свой продукт; какие вопросы должен себе задавать каждый хороший руководитель и что ему следует делать, чтобы подчиненные были эффективны и мотивированы на достижение лучших результатов. В книге вы найдете предельно конкретные и практические ответы на эти и другие важные для бизнесмена вопросы.

Harvard Business Review (HBR) , Джон Коттер , Майкл Овердорф , Майкл Портер , Теодор Левитт

Деловая литература / Управление, подбор персонала / Финансы и бизнес