Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Не поймите меня неправильно! Я не ратую за отказ от всяких стандартов. Даже если при разработке продукта делались некоторые уступки, промышленная производственная линия всегда подчинена строжайшим процедурам контроля качества. Когда небольшое повышение точности аналитического процесса достигается за счет удвоения времени на его выполнение, это не сработает. Если применяемый аналитический метод высокочувствителен к выбросам данных, будет слишком рискованно применять его в окружении, где нет возможности осуществлять проверку данных перед их использованием. Остается надеяться, что абсолютно лучшее решение и решение, наиболее пригодное для операционного внедрения, не будут слишком сильно расходиться между собой. Тем не менее необходимо делать между ними различие.

Давайте на минутку обратимся к контрольным процессам на производственных линиях. Производители используют процедуры статистического контроля, выдающие постоянные сводки о работе производственного процесса. Статистический контроль процессов предоставляет информацию о том, находятся ли различные показатели в ожидаемом диапазоне и в каком направлении они изменяются. Когда какой-либо показатель выходит за пределы допустимого диапазона, применяется корректирующие действие. Например, если температура изделий по выходу из печи становится слишком высокой или слишком низкой, производственная линия может быть остановлена с целью регулировки печи.

Процедуры статистического контроля процессов могут применяться и к операционно-аналитическим процессам. Организация способна отслеживать решения, принимаемые аналитическим процессом, а также данные, на основе которых решения принимаются. Принимаются ли решения в тех же пропорциях, что и раньше? Показывают ли вводимые данные то же ожидаемое распределение, что и раньше? Когда один из показателей начинает отклоняться от установленных параметров, кто-то должен вмешаться, остановить процесс и устранить неполадку точно так же, как это происходит на производственных линиях. Для контроля за операционно-аналитическими процессами могут использоваться методы традиционной аналитики.

Успех операционной аналитики зависит не только от мощности и эффективности собственно аналитики, но и от того, как люди и организационные процессы фактически используют рекомендации и следуют решениям. Поведение сотрудников должно измениться под воздействием аналитики, иначе она не принесет искомой отдачи. Вот почему изменение организационной культуры является ключом к успеху операционной аналитики, о чем мы подробнее поговорим в девятой главе.

Уроки прошлого

На протяжении всей книги я делаю акцент на том, что многие уроки прошлого применимы и в мире больших данных и операционной аналитики. Существуют классические аналитические концепции, от которых не следует отказываться, несмотря на шумные призывы к отказу. Давайте рассмотрим несколько областей, где шумиха могла затмить реальность.

Статистические методы по-прежнему актуальны

Сегодня можно наткнуться на мнение, кто классические методы статистики – это устаревшие концепции, предназначенные только для малых данных. Это абсолютно ошибочная точка зрения. Разумеется, аналитика развивается и добавляет все новые аналитические дисциплины, поэтому организации должны расширять свои аналитические компетенции за пределы классических методов статистики. Некоторые аналитические методы и алгоритмы, такие как алгоритмы поиска и обработки естественного языка, не основаны непосредственно на методах классической статистики. Это нормально. Однако подобно тому как добавление нереляционного окружения к реляционному не означает, что потребности в реляционной обработке канули в лету, так и добавление дополнительных аналитических дисциплин к классической статистике не говорит о том, что последняя потеряла свое значение{69}.

Независимо от того, насколько большим является источник данных, ему все равно присущи вариативность и неопределенность. Данные никогда не бывают идеальными, и в изучаемых нами совокупностях данных всегда будет присутствовать естественная вариативность. Сколько бы данных у нас ни имелось, невозможно с идеальной точностью предсказать поведение каждого конкретного человека или поломку каждого конкретного двигателя, поскольку нам всегда будет недоставать некоторой информации и всегда будут присутствовать неучтенные факторы{70}. Статистика позволяет количественно оценить и учесть риски, сопряженные с этими пробелами. Давайте рассмотрим следующий пример.

Перейти на страницу:

Похожие книги

Антихрупкость. Как извлечь выгоду из хаоса
Антихрупкость. Как извлечь выгоду из хаоса

«Антихрупкость» – книга уникальная: она рассказывает о ключевом свойстве людей, систем и не только, свойстве, у которого до сих пор не было названия. В мире, где царит неопределенность, нельзя желать большего, чем быть антихрупким, то есть уметь при столкновении с хаосом жизни не просто оставаться невредимым, но и становиться лучше прежнего, эволюционировать, развиваться. Талеб формулирует простые правила, которые позволяют нам преодолеть хрупкость и действовать так, чтобы непредсказуемая неопределенность, этот грозный и внезапный Черный лебедь, не причинила нам вреда – и более того, чтобы эта редкая и сильная птица помогла нам совершенствоваться. Для этого следует в первую очередь осознать: мы по природе своей антихрупки – и не должны позволять кому бы то ни было лишать нас этого чудесного свойства.

Нассим Николас Талеб

Деловая литература / О бизнесе популярно / Финансы и бизнес
Управление бизнесом
Управление бизнесом

Harvard Business Review – главный деловой журнал в мире. Если вы не читали других книг из серии «HBR: 10 лучших статей», то прочтите эту, в определенном смысле саму важную. Для нее из сотен статей журнала редакторы HBR отобрали те, в которых влиятельные бизнес-эксперты рассказывают о том, как следует внедрять инновации в управление бизнесом, о роли руководителя во времена болезненных перемен; какие данные помогут распознать потребности клиента и улучшить свой продукт; какие вопросы должен себе задавать каждый хороший руководитель и что ему следует делать, чтобы подчиненные были эффективны и мотивированы на достижение лучших результатов. В книге вы найдете предельно конкретные и практические ответы на эти и другие важные для бизнесмена вопросы.

Harvard Business Review (HBR) , Джон Коттер , Майкл Овердорф , Майкл Портер , Теодор Левитт

Деловая литература / Управление, подбор персонала / Финансы и бизнес