Читаем Риски цифровизации: виды, характеристика, уголовно-правовая оценка полностью

– декларативные знания, основанные на понятиях, фактах и объектах. Они дают всю необходимую информацию о проблеме в виде простых истинных или ложных утверждений;

– процедурные знания – правила, стратегии, программы и процедуры. Они описывают то, как проблема может быть алгоритмически решена, и шаги на пути ее решения;

– эвристические знания, накапливаемые интеллектуальной системой в процессе ее функционирования, а также заложенные в ней априорно, но не имеющие статуса абсолютной истинности в данной проблемной области. Обычно эвристические знания связаны с отражением в базе знаний неформального опыта решения задач. Эвристические знания основаны на правиле «большого пальца», т. е. на отказе от очевидно неприемлемых вариантов. Эвристические представления полезны для управления процессом рассуждения. При этом представление знаний базируется на стратегиях решения проблем в соответствии с опытом преодоления прошлых проблем, которым обладает эксперт;

– метазнания, дающие представление о других типах знаний, которые подходят для решения проблемы. Это «знания о знании», о том, как оно устроено и структурировано; «знания о получении знаний», т. е. приемы и методы познания (когнитивные умения) и оценка возможностей работы с ним. Иными словами, метазнания объединяют знания о способах использования знаний и знания о свойствах знаний. Задача применения метазнаний состоит в повышении эффективности решения проблем посредством правильного процесса рассуждения;

– структурные знания, связанные с информацией, основанной на правилах, наборах, концепциях и отношениях. Они представляют собой информацию, необходимую для разработки структур знаний и общей ментальной модели проблемы.

Архитекторы систем представления данных используют следующие логические структуры: списки и деревья для выстраивания иерархических знаний; семантические сети – схемы, применяемые для демонстрации здравого смысла или стереотипных знаний; скрипты – для описания события. Методология представления и использования знаний нашла широкое распространение в процессе развития экспертных систем – программного обеспечения, способного перенять у человека экспертизу в узких предметных областях, а также выступает сквозной низкоуровневой методологией, обеспечивающей возможность архитектурного планирования систем ИИ и баз знаний.

Области применения искусственного интеллекта. Работа с естественными языками и голосовые помощники. Обработка естественного языка (Natural Language Processing, NLP) является областью применения ИИ, которая занимается взаимодействием между компьютерами и людьми и использует естественный язык человека. Это направление, объединяющее ИИ и математическую лингвистику, изучает проблемы компьютерного анализа и синтеза естественных языков. Анализ в данном контексте означает возможность читать, распознавать, понимать и расшифровывать человеческие языки в целях выявления смысла передаваемой информации; синтез – способность генерировать текст с учетом грамматических и семантических правил естественного языка. Решение этих проблем позволит создать удобную форму взаимодействия компьютера и человека.

Типовое взаимодействие человека с компьютером на основе NLP выглядит следующим образом:

– человек что-либо произносит на естественном (человеческом) языке в микрофон компьютера;

– компьютер записывает звук;

– записанная аудиоинформация распознается и преобразуется в текст;

– данные текста обрабатываются интеллектуальными системами с учетом смысла сказанного и ответ выдается в форме цифровых данных;

– обработанные данные преобразуются в аудиоформат;

– компьютер воспроизводит аудиофайл.

Обработка естественного языка служит основой для многих прикладных программных приложений:

– приложений языкового перевода, например Google Translate или Yandex Переводчик;

– текстовые процессоры для проверки грамматической точности текстов, такие как Microsoft Word или Grammarly;

– приложения интерактивного голосового ответа, используемые в центрах обработки вызовов для ответа на запросы определенных пользователей;

– голосовые помощники, такие как Google Assistant, Siri, Cortana и Alexa;

– телефонные роботы для голосовой навигации по сервисам и автоматических голосовых уведомлений.

Некоторые системы способны не только распознавать человеческую речь, но и давать оценку – «тональность» высказываний, которая показывает эмоциональное состояние человека. Прикладное применение имеют также такие задачи, как идентификация человека по голосу и характерным речевым оборотам, определение числа участвующих в дискуссии людей и степени удовлетворенности полученным ответом.

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Криптография и свобода
Криптография и свобода

Слово криптография означает тайнопись.Российская криптография имеет многовековую историю, начинающуюся с указов Петра I о «черных кабинетах». До середины 80-х годов XX века криптография в России использовалась только для военных, дипломатических и правительственных линий связи и была строго засекречена. Даже употребление слов «криптография», «шифры», «ключи к шифрам» в открытых публикациях было недопустимо. Но в мире быстро назревала потребность в гражданской криптографии, стремительно развивались информационные технологии, стали появляться компьютерные сети, Интернет, денежные электронные расчеты. Для этого требовались надежные и общедоступные криптографические методы защиты информации.Была ли Россия готова к появлению гражданской криптографии? И да, и нет.Да, потому что еще с советских времен в России существовала прекрасная криптографическая школа и высококлассные специалисты-криптографы, которые долгое время на равных конкурировали с американским Агентством Национальной Безопасности и обеспечивали гарантированную защиту военных, дипломатических и правительственных линий связи.Нет, потому что синдром тотальной секретности всего, что касалось криптографии, восходил к сталинским временам и мало изменился за прошедшие десятилетия. А в подобных условиях очень хорошо себя чувствуют многочисленные чиновники от криптографии.В 1992 году случился кризис: поток фальшивых авизо захлестнул Центральный Банк России и грозил обрушить всю финансовую систему. Потребовалась срочная помощь криптографов: в кратчайшие сроки создать, наладить и запустить в эксплуатацию систему криптографической защиты телеграфных и почтовых авизо в такой огромной структуре, как ЦБ РФ.Эта задача была выполнена за три месяца – неимоверно короткий срок.В России появился первый реальный пример гражданской криптографии.О том, что представляла из себя советская криптографическая школа, о ее специалистах и начальниках, о царившей тогда в стране атмосфере, о том, как была создана система защиты для Центрального Банка России, и, наконец, о том, почему же в России так трудно пробивает себе дорогу гражданская криптография – в этой книге.

Михаил Евгеньевич Масленников , Михаил Масленников

Биографии и Мемуары / Математика / Прочая компьютерная литература / Образование и наука / Книги по IT