Программа исследований Уинфри, изложенная в этом письме в столь характерном для Уинфри стиле, касалась того, о чем другие исследователи в то время даже не помышляли. Разумеется, он совершенно не вписывался в мейнстрим «нормальной» науки с ее тенденцией к узкой специализации и акцентом на редукционизм, то есть сведение явлений высшего порядка к явлениям низшего порядка; другими словами, Уинфри не думал лишь о генах, или кварках, или нейронных каналах. Более того, он не зацикливался даже на революции, порожденной теорией хаоса, которая, по мнению всех его аспирантов, была на тот момент передовым краем науки, хотя на самом деле эта отрасль науки к тому времени уже достигла своей зрелости и была готова уступить пальму первенства очередной великой тенденции: изучению нелинейных систем, состоящих из огромного множества элементов. Это движение, впоследствии получившее название «теории сложности», следовало представлять себе как естественное ответвление теории хаоса, в каком-то смысле ее оборотную сторону. Вместо того чтобы сосредоточиться на странном и «сумасбродном» поведении малых систем, специалисты по теории сложности были увлечены организованным поведением больших систем. Одна из самых ранних работ Уинфри по самопроизвольной синхронизации биологических осцилляторов уже касалась этой темы. К описываемому мною времени она уже достигла стадии зрелости, причем ее созревание происходило разными путями.
Например, в своем письме он упоминал о том, что собирается работать над «трехмерными скрученными + заузленными волнами». Ключевое слово здесь – трехмерные
. Никто прежде не занимался изучением поведения самоподдерживающихся осцилляторов, взаимодействующих в трехмерном пространстве. Как было показано выше, когда теоретики впервые приступили к анализу динамики популяций осцилляторов, они полностью игнорировали пространство, полностью сосредоточившись лишь на времени, на синхронности ритмов, безотносительно взаимного расположения этих осцилляторов. Открытия, которые совершили Винер, Курамото, Пескин и даже сам Уинфри, ограничивались простейшим из возможных случаев, соединением по принципу «каждый с каждым», когда каждый осциллятор оказывает совершенно одинаковое влияние на все остальные осцилляторы. Такая глобальная связь всегда рассматривалась лишь как целесообразный первый шаг – она была кратчайшим путем сквозь джунгли многоосцилляторной динамики. Не было никакой нужды задумываться о пространственной структуре, поскольку каждый осциллятор является соседом всех остальных осцилляторов. После рассмотрения этого простейшего случая можно было ступить на следующую ступеньку теоретической лестницы и рассмотреть осцилляторы, упорядоченные в виде одномерной цепи или кольца. Можно было ожидать, что в этом случае произойдет что-то новое, что-то помимо чистого синхронизма: волны действия могли устойчиво распространяться от одного осциллятора к следующему. Вообще говоря, в осцилляторных моделях с локальными связями более типичным явлением оказывались волны, а не синхронизм. Интуиция, основанная на опыте футбольного болельщика, подсказывает мне следующую аналогию: «запустить волну» и поддерживать ее движение на огромном стадионе бывает гораздо легче, чем заставить всех присутствующих на стадионе одновременно вставать и садиться. Когда кое-кто из математиков попытался подняться по теоретической лестнице еще выше, к двумерным листам осцилляторов, у них попросту закружилась голова: анализ таких систем осложнился до предела. Поэтому когда Уинфри решил продолжить восхождение по этой лестнице и выйти на уровень трехмерных систем, желающих составить ему компанию не нашлось.