Нам кажется само собой разумеющимся, что мы можем петь и танцевать вместе с другими людьми, шагать в ногу с ними, в унисон хлопать в ладоши. Синхронизм – наша вторая природа. Но поскольку он дается нам очень легко, мы плохо представляем себе, какие требования синхронизм предъявляет к нам. По-видимому, он требует от нас хотя бы минимального уровня интеллекта, способности планировать свои действия во времени и прогнозировать действия других людей. Именно поэтому публикации о синхронном мерцании тысяч светлячков столь долго вызывали скептицизм ученых и именно поэтому на нас производит столь сильное впечатление синхронное стрекотание сверчков или способы ухаживания самцов манящего краба, которые стараются привлечь самок, размахивая в унисон своими гигантскими клешнями.
Тем не менее эти чудеса синхронизма в живой природе всегда можно объяснить результатами эволюции, следствием миллионов лет естественного отбора. В этом свете должно быть совершенно понятно, почему открытие Гюйгенса, совершенное благодаря его интуитивной прозорливости, оказалось столь шокирующим.
Дело в том, что он обнаружил феномен синхронизма в
Бездушные, безжизненные предметы могут самопроизвольно достигать синхронизма.
Взаимная симпатия маятниковых часов показала нам, что способность к синхронизму не зависит от наличия интеллекта, души или естественного отбора. Она возникает из самого глубинного источника всего сущего – из законов математики и физики.
Этот вывод породил глубочайшее почтение к синхронизму в технологии. Например, если бы не синхронизм, у нас не было бы лазерной хирургии глаза, проигрывателей компакт-дисков, сканеров, которыми пользуются кассиры в супермаркетах, и прочих устройств на основе лазеров, которые применяются в нашей повседневной жизни. Интенсивный, когерентный, тонкий, как иголка, лазерный луч является результатом синхронного испускания световых волн триллионами атомов. Сами по себе эти атомы ничем не отличаются от атомов в обычной лампочке накаливания – хитрость заключается лишь в способе их взаимодействия. Вместо света, создаваемого какофонией разных цветов и фаз, у лазерного света лишь один цвет и одна фаза – как у хора, поющего лишь одну ноту. Можно добиться, что этот свет будет очень сильным (хотя это вовсе необязательно); он сосредоточен в узком луче и может быть сфокусирован в виде крошечного светового пятна. Напротив, силу обычного света можно существенно увеличить лишь за счет приложения очень большой энергии (возможно, настолько большой, что приложение ее станет для нас непозволительной роскошью); обычный свет сильно рассеивается, а его интенсивность резко снижается с увеличением расстояния от источника света; к тому же обычный свет трудно сфокусировать. Все эти преимущества лазерного света позволяют легко управлять им. Например, хирургические лазеры создают пятно сконцентрированной энергии, диаметр которого оказывается меньше толщины режущей кромки обычного хирургического скальпеля и может добираться до больных тканей в таких местах, куда обычным хирургическим скальпелем добраться невозможно[109]
. Кроме того, лазерная хирургия почти бескровна, поскольку свертывание крови происходит практически мгновенно: в процессе разрезания ткани лазерный луч прижигает ее.В течение многих лет после изобретения лазера никто не знал, для каких целей можно использовать это изобретение. Кое-кто, посмеиваясь, описывал лазер как решение, для которого еще предстоит найти задачу. Тем не менее этот плод фундаментальных исследований, родившийся из чистого любопытства ученых, которым просто хотелось исследовать поведение световых волн в синхронизме, стал одним из самых универсальных устройств нашего времени, область применения которого никто не мог предвидеть. На торжественном вечере, устроенном в честь сорокалетия лазера, Артур Шавлов, лауреат Нобелевской премии по физике за 1981 г. (в частности, за совместную с Чарльзом Таунзом разработку лазера), вспоминал: