Одной из самых замечательных особенностей возникшей в то время солнечной системы является пустота, которая отделяет ближние планеты Солнечной системы (Меркурий, Венера, Земля и Марс) от более удаленной гигантской планеты – Юпитера. Большинство из нас имеют весьма приблизительное представление о величине расстояний, которые разделяют эти планеты. Эти расстояния кажутся просто непостижимыми. Но мы начинаем получать более отчетливое представление о них здесь, в Итаке, благодаря модели Солнечной системы, выполненной в масштабе. Эта модель называется Sagan Walk («Путь Сагана»); она была создана в честь ныне покойного Карла Сагана, выдающегося астрофизика, б
На самом деле это не совсем вакуум. Между Марсом и Юпитером находится пояс, состоящий из миллионов глыб, вращающихся вокруг Солнца; все это множество глыб называется поясом астероидов[121]
. Некоторые из этих глыб цельные, тогда как другие представляют собой груды не скрепленных между собой камней разных размеров, начиная с песчинок и заканчивая огромными валунами шириной в милю. В отличие от привычных сплошных камней, цельность которых обеспечивается химическими связями, единственное, что удерживает между собой такие несвязанные скопления, – сила их взаимного притяжения.Такой пояс астероидов является для нас загадкой по нескольким причинам. Во-первых, он представляется более «рыхлым», чем должен бы быть. Совокупная масса этого пояса сейчас составляет примерно одну двадцатую часть массы Луны, хотя в какое-то время он должен был содержать массу, достаточную для образования нескольких планет, таких как наша Земля. Однако сейчас масса астероидного пояса чрезвычайно далека от такой величины. Куда же она девалась?
Существует еще одна загадка, связанная с этой. На протяжении более чем ста лет астрономам известно о загадочных «пустотах» в этом поясе, круговых выемках, в которых отсутствуют астероиды (эти выемки представляют собой нечто наподобие промежутков между записями на виниловой грампластинке)[122]
. Они были обнаружены в 1857 г. Дэниелом Керквудом, бывшим школьным учителем, который освоил алгебру, штудируя учебник по алгебре вместе с одним из своих учеников, и который впоследствии стал профессором математики в университете штата Индиана. Анализируя данные, собранные астрономами, Керквуд обратил внимание на неравномерность расположения этих промежутков; к тому же их местоположения не следовали каким-либо правилам, которым должны были следовать.Важная подсказка, которая помогла найти ответ на этот вопрос, появилась в 1866 г., когда Керквуд переформулировал его как вопрос о времени, а не о расстоянии. Сколько времени, спросил себя Керквуд, понадобилось бы гипотетическому астероиду, находящемуся в одном из таких промежутков, чтобы совершить один полный оборот вокруг Солнца? Воспользовавшись третьим законом Кеплера (описывающим математическую связь между расстоянием от какого-либо небесного тела до Солнца и временем, которое требуется этому небесному телу, чтобы совершить один полный оборот вокруг Солнца), он смог вычислить орбитальные периоды для каждого такого промежутка. Например, чтобы совершить один полный оборот вокруг Солнца астероиду, находящемуся в самом большом промежутке, понадобилось бы примерно 4 года – интересное число, поскольку оно в точности равняется одной трети орбитального периода Юпитера, составляющего около 12 лет. Аналогично, астероид, находящийся в одном из других промежутков, совершил бы пять полных оборотов вокруг Солнца за то время, которое требуется Юпитеру для совершения двух полных оборотов вокруг Солнца. Вообще говоря, все промежутки подчинялись одному и тому же замечательному правилу: их орбитальные периоды всегда были связаны с орбитальным периодом Юпитера посредством некоторого соотношения небольших целых чисел, например 3:1, 5:2, 7:3 или 2:1.