Сейчас стало легко читать эти генетические телеграфные ленты, и компьютерные программы в состоянии сравнивать их между собой, вычислять, насколько они близки, и восстанавливать, что было в самом начале испорченного телефона. Например, если у вас есть три текста стихотворения, два из которых отличаются на одно слово, а третье – на два, их можно попробовать выстроить в хронологической последовательности, если есть другие подсказки (например, одно находится в примитивном организме, а другое – в современном). Из одних сообщений на телеграфной ленте можно выстроить эволюционное генеалогическое дерево, что удобно, потому что в таком случае не надо мучительно пересчитывать ноги креветки или разглядывать клювы вьюрков – это сделает за вас компьютер. Но серьезная проблема в том, что сообщения на телеграфной ленте не скажут вам, как устраиваются фрагменты белков в отношении друг друга, когда белок уже создан и расщепился. Чтобы представить себе законченный продукт, его нужно измерить, а это не так-то просто; для этого нужно создавать кристаллы самого белка.
Видимость атомов
Кристаллография, вероятно, наименее интуитивная из всех дисциплин, составляющих биологию, и те, кто ей занимается, посвящены в едва ли не самое колдовское знание, востребованное в любой научной области. Это смесь священных эмпирических способов (потереть бороду над блюдцем для начала роста кристаллов – типичный трюк) и глубоких математических теорий. Мой дядя – известный кристаллограф, и грифельная доска в его аскетичном кабинете всегда испещрена тройными интегралами – необычное зрелище для науки о жизни. Если методы трудны для понимания, то результаты сенсационно ясны. Кристаллографы получают, попросту говоря, изображения белков, в которых можно разглядеть атомы.
Мы не можем просто посмотреть на белки в микроскоп, потому что световые волны просто слишком велики, чтобы разглядеть столь мелкие объекты. Представьте, к примеру, что вы смотрите на волны, набегающие на пляж. Трудно допустить, что в море какое-то небольшое надувное устройство может повлиять на их поведение, а вот большое судно способно произвести большой эффект на прибой. Точнее говоря, размер судна должен быть сопоставим с размером волн, чтобы на них подействовать. То же самое относится к свету, и поэтому в микроскоп невозможно увидеть предметы меньше минимальной длины волны видимого спектра, а это примерно 0,5 микрон.
Поскольку конкретная волна, идущая слева, попадает в две щели одновременно, выходящие из щелей волны будут синхронизированы. Посмотрите на узор, который образуют эти волны: если две вершины или две впадины совпадают, они удваиваются; если вершина совпадает с впадиной, они взаимоуничтожаются. И на выходе, так сказать, на пляже, вы видите равномерную структуру: где набегающая волна сменяется затишьем через каждые несколько метров.
Как перейти от этого к белкам? Во-первых, представьте, что эксперимент со щелями проходит в трехмерном, а не в двухмерном пространстве: волны ударяются в карточку, в которой равномерно просверлены отверстия, и вы фиксируете узор волн на карточке-мишени, параллельной первой и расположенной от нее на некотором расстоянии. Предположим, отверстия все одинакового размера и расположены в форме квадрата. В таком случае на мишени вы получите квадратный узор волн. Интересно то, что чем ближе расположены отверстия на первой карточке, тем больше будет узор на второй. Сближение отверстий эквивалентно отдалению карточки-мишени[48]
. А теперь представьте, что эти отверстия не круглые, а более сложной формы, например, в виде буквы G. В таком случае точки на мишени, так называемая «дифракционная картина», будет выглядеть иначе. Появятся другие, более слабые точки, потому что каждая часть буквы G отражает свет независимо и образует узор, соответствующий конкретной G и всем остальным G на карточке.