So a set of gene frequencies that once made your group superbly adapted may now constitute a marked disadvantage; and gene frequencies that once conferred only marginal fitness may now be the key to survival. What a disturbing concept of existence: Just when you’re most in harmony with your environment, that’s when the ice you’re skating on begins to thin. What you should have been emphasizing, had you been able, is early escape from optimum adaptation—a deliberate fall from grace contrived by the well-adjusted, the elective self-humbling of the mighty. The meaning of “overspecialized” becomes clear. But this is a strategy, we well know from everyday human experience, that privileged populations are almost never willing to embrace. In the classic confrontation between short-term and long, the short-term tends to win—especially when there’s no way to foretell the future.
Yes, they lack foresight. But how could they know? It’s asking a great deal of monkeys to foresee future geological or ecological change. We humans, who with our intelligence ought to be much more capable prophets than monkeys, have difficulty enough foreseeing the future, and still more difficulty acting on our knowledge.4
In military operations, ward-heeler politics, much of corporate strategy, and national response to the challenge of global environmental change, the short-term tends to predominate. So offhand, you might think that precautionary maintenance of a collection of gene frequencies that will be optimum for someWhat could possibly cause the gene frequency in different populations to drift to suboptimal values? Suppose the mutation rate went up because of some new chemical in the environment (belched up from the Earth’s interior), or an increase in the flux of cosmic rays (perhaps from some exploding star halfway across the Milky Way). Then the gene frequencies in isolated populations diversify. You might even get a population that, by accident, winds up with the optimum frequencies needed to adapt to a future need. But that will be very rare. More likely, big changes will be lethal. So an increase in the mutation rate tends mainly to spread out the variation in gene frequencies, but not too much.
The population will, through mutation and selection together, tend to follow the changing circumstances, always working toward the optimum adaptation. If the external conditions vary slowly enough, the population might always be close to the optimal adaptation. Gene frequencies are always in slow motion. This gradual movement, driven by mutation and natural selection in a changing physical and biological environment, is just the evolutionary process outlined by Darwin; and Wright’s continuously changing gene frequencies are a metaphor of natural selection.
——
Up to now each isolated subpopulation we’ve been considering has been large, comprising maybe thousands of individuals or more. But now, Wright’s critical step: Let’s think about small groups, with no more than a few dozen individuals. They tend to become closely inbred. After a few generations, who’s available to mate with except relatives? So let’s look at inbreeding for a moment before considering the evolutionary prospects of small populations.
Some human cultures have sex in private and eat in public, some do it the other way around; some live with their aged relatives, some abandon them, and some eat them; some institute rigid rules that even toddlers must obey, and some let children do almost anything they want; some bury their dead, some burn their dead, and some set them out for the birds to eat; some use cowrie shells for money, some use metal, some paper, and some do without money altogether; some have no gods, some have one god, some have many gods. But all of them abominate incest.