Недостатки, свойственные клистрону,
устраняются в лампе бегущей волны (ЛБВ). Усиление и КПД в ЛБВ могут быть значительно выше, чем в клистроне. Это объясняется тем, что электронный поток в ЛБВ взаимодействует с переменным электрическим полем на большом участке своего пути и отдает значительную часть своей энергии на создание усиленных колебаний. Электронный поток в ЛБВ гораздо слабее, чем в клистроне, и поэтому уровень шумов сравнительно невелик. Полоса частот может быть очень большой, так как в ЛБВ нет никаких колебательных систем. Ширина полосы частот ограничивается не самой лампой, а различными дополнительными устройствами, служащими для связи лампы с внешними цепями и для согласования отдельных элементов этих дополнительных устройств между собой. Лампы бегущей волны для частот порядка тысяч мегагерц имеют полосу частот пропускаемых колебаний порядка сотен мегагерц, что вполне достаточно для радиолокации и всех видов современной радиосвязи. ЛБВ устроены так. В левой части удлиненного баллона помещен электронный прожектор, имеющий подогревный катод, фокусирующий электрод и анод. Электронный луч, созданный электронным прожектором, проходит далее внутри проволочной спирали, играющей роль внутреннего провода коаксиальной линии. Наружным проводом этой линии служит металлическая трубка. Спираль укреплена на специальных изоляторах. Фокусирующая катушка, питаемая постоянным током, служит для сжатия электронного луча по всей его длине. Вместо катушки для фокусировки могут быть применены также постоянные магниты. Так как магнитные фокусирующие системы очень громоздки, то разработаны электростатические способы фокусировки электронного луча в ЛБВ, т. е. фокусировка с помощью электрического поля.В ЛБВ для более коротких сантиметровых волн спираль заменяют замедляющими системами других типов, так как трудно изготовить спираль очень малых размеров. Эти замедляющие системы представляют собой волноводы сложной зигзагообразной конструкции или имеющие стенки в виде гребенок. Вдоль таких волноводов электронный луч пропускается по прямой линии, а электромагнитная волна распространяется с пониженной скоростью. Подобные замедляющие системы применяют также в мощных ЛБВ, так как спираль не может выдержать рассеяния в ней большой мощности.
Принципы работы ЛБВ послужили основой для создания лампы обратной волны (ЛОВ), которую иногда также называют карцинотроном.
Эта лампа в отличие от ЛБВ предназначена только для генерирования сантиметровых и более коротких волн. В ЛОВ применяют также волноводные замедляющие системы, как и в ЛБВ, но волна и электронный луч движутся навстречу друг другу. Первоначальные слабые колебания в ЛОВ получаются от флуктуаций электронного потока, затем они усиливаются и возникает генерация. Путем изменения постоянного напряжения, создающего электронный луч, можно в очень широком диапазоне частот осуществлять электронную настройку ЛОВ. Созданы маломощные ЛОВ на частоты в десятки тысяч мегагерц, имеющие полезную мощность генерируемых колебаний до десятков долей ватта при КПД порядка единиц процентов. Для частот до 10 000 МГц разработаны ЛОВ с полезной мощностью в десятки киловатт при непрерывном режиме работы и в сотни киловатт при импульсном режиме.Генераторные ЛОВ малой и средней мощности с прямолинейным электронным лучом называют кар-цинотронами типа 0. Для больших мощностей применяют ЛОВ, называемые карцинотронами типа М, в которых электронный луч под действием магнитного поля движется по окружности. Замедляющая система в этих лампах располагается по окружности, а поперечное магнитное поле создается постоянным магнитом так же, как и в магнетроне.
51. ОБЩИЕ ПОНЯТИЯ ОБ ЭЛЕКТРИЧЕСТВЕ И ЭЛЕКТРОННОЙ ТЕОРИИ
Долгое время существовало мнение о том, что атомы являются первичными, неразложимыми и неизменными частями всех тел природы, откуда и произошло название «атом», что по-гречески значит «неделимый». В конце IX в., пропуская электрический ток высокого напряжения через трубку с сильно разреженным газом, физики заметили зеленоватое свечение стекла трубки, вызванное действием невидимых лучей. Светящееся пятно располагалось против электрода, соединенного с отрицательным полюсом источника тока (катода). Поэтому лучи получили название катодных.
Под действием магнитного поля светящееся пятно смещалось в сторону. Катодные лучи вели себя так же, как проводник с током в магнитном поле. Смещение зеленоватого пятна происходило также под влиянием электрического поля, причем положительно заряженное тело притягивало лучи, отрицательно заряженное тело отталкивало их. Это навело на мысль, что сами катодные лучи представляют собой поток отрицательных частиц – электронов.