1. Исследование процессов научения позволили обнаружить, что результаты многих экспериментов, проверяющими связь между информационными и временными переменными в ходе обучения, удовлетворительно аппроксимируются экспоненциальной функцией y=y/max/[1-exp(-kt)], где y - сила навыка ( в частности, объем заученного материала); y/max/ верхний предел силы навыка; t - число проб (временной показатель); k - константа, выражающая скорость научения.
2. Г. Эббингауз, а позднее и его последователи определили забывание как логарифмическую функцию времени y=k(clogt), где y - объем сохраняемого материала; k и c экспериментальные константы.
В законе Хика время латентного периода дизъюнктивной реакции Т/p/ описывается выражением Т/p/=a+blog/c/y, где a и b - константы (a характеризует несократимую долю величины времени реакции); y - длина алфавита сигналов, из которого производится выбор при опознании сигнала (объем следов в памяти). Если пренебречь величиной a, то указанное выражение можно записать так: Т/p/=blod/c/y, откуда y=c/Т/p//b.
Таким образом, во всех рассмотренных случаях информация и время, выступающие атрибутами математических процессов, связаны элементарными взаимо-обратными функциями: показательной и логарифмической.
В каком классе функций следует искать в явном виде зависимость между объемными и временными переменными? Приведенные выше примеры указывают на класс элементарных показательных функций. Учитывая специфику рассматриваемого феномена (памяти) и ее свойство аддитивности для вербального материала, естественно сделать некоторое обобщение и перейти от показательных функций к сумме показательных функций, а классе этих математических объектов попытаться найти интересующую нас зависимость. В общем виде сумму показательных функций можно записать так:
============Формула 1 стр. 110========== y(n)=A/n/a"n"+A/n-1/a"n-1"+...+A/1/a"1"+A/0/a"0".
Положив для простоты коэффициенты A/0/, A/1/, ... равными единице, получим выражение:
============Формула 2 стр. 110========== y(n)=a"n"+a"n-1"+...+a+1,
Которое можно представить в виде возрастающей геометрической прогрессии с членом b/1/=1 и q=a.
Д. А. Игонин предложил использовать эту функцию для построения информационно-временной модели памяти, сформулировав гипотезу о слоистой организации хранилища, базирующуюся на следующих положениях: 1) слоистость хранилища памяти понимается прежде всего как функциональная слоистость, обнаруживаемая при информационно-веременным признака, слои в памяти упорядочены и могут быть пронумерованы; 2) объемы совокупностей следов, локализованных в каждом из слоев, ограничены и возрастают с увеличением номера слоя; 3) число n слоев ограничено (1єnє8);4) кроме того, допускается, что временные характеристики мнемонических процессов запоминания, хранения, забывания и извлечения с увеличением номера слоя монотонно возрастают; 5) хранилище может заполняться следами, функционирующими на репродуктивном, "узнающем" и облегчающем уровнях памяти [50]. На репродуктивном уровне памяти слои хранилища заполняются последовательно с ростом номера n; на "узнающем" и облегчающем уровнях памяти така очередность необязательна.