Читаем Складка. Лейбниц и барокко полностью

Но перед этим поговорим о третьем уровне бесконечного. Речь идет о сериях, по-прежнему не имеющих последнего члена, но конвергентных и стремящихся к некоему пределу}2 Речь идет уже не о распространениях, а об «усилениях» или о «напряженностях»

(интенсивностях). Уже не об отношениях, а скорее о законах. Не о Комбинаторном, а о Характерном. Не о материи, а о том «реальном» в материи, которое заполняет протяженность (разумеется, это «возможная» реальность). Именно реальное в материи, вещь, обладает внутренними свойствами, чья детерминация всякий раз затрагивает некую серию величин, конвергирующих в направлении предела, так как между пределами возникает отношение нового типа (dy/dx), образующее закон. Герман Вейль писал, что каждый закон Природы с необходимостью представляет собой дифференциальное уравнение. И тут понятие реквизита — одно из наиболее оригинальных у Лейбница — обозначает уже не определяющие, но условия, пределы и дифференциальные отношения между этими пределами, тем самым обретая автономный и точнейший смысл. Целого и частей теперь нет, а есть степени каждого свойства. Так, внутренними свойствами звука являются интенсивность в собственном смысле слова, высота, длительность, тембр; свойства цвета — оттенок, насыщенность, валер; золото — в часто упоминаемом Лейбницем примере —

обладает цветом, весом, ковкостью, сопротив-

{12}

Спиноза в XII Письме

также различает три типа бесконечного: бесконечное-в-себе, бесконечное-по-основанию и, наконец, бесконечное, мыслимое в его пределах. Лейбниц выражает удовлетворение этой классификацией Спинозы, хотя сам отношения между пределом и бесконечным понимает по-иному. Ср. GPh, I, p. 137.

{82}

лением купелированию в неочищенной азотной кислоте. Реальное в материи обладает не только протяженностью, но еще и «непроницаемостью, инерцией, неистовством и связностью». То, что мы называем текстурой некого тела, представляет собой как раз множество этих внутренних свойств, свободу их варьирования и отношения между их пределами: такова текстура золота.13

По мере того, как Реквизиты тем самым начинают отличаться от Определимых (хотя они и способны образовывать определения), мы имеем дело с включениями третьего типа, — на этот раз не взаимными и односторонними: здесь-то достаточное основание и становится принципом. Всякое реальное есть субъект, чей предикат является свойством, стоящим в серии других свойств, поскольку множество предикатов есть отношение между пределами этих серий (следует избегать смешения предела с субъектом).

Мы должны отметить одновременно и нередуцируемость этой новой области с точки зрения познания, и, к тому же, ее в двух смыслах переходную роль с точки зрения самого познания. С одной стороны, реквизиты, по сути дела, не являются предположительно интуитивными сущностями первого типа бесконечного, как и теорематическими сущностями второго типа бесконечного, содержащимися в определениях и доказательствах. Это проблематичные сущности, соответствующие третьему типу бесконечного. Математика Лейбница непрестанно превращает проблемы в нередуцируемую инстанцию, добавляющуюся к последовательностям определений; без нее определения, возможно, не могли бы выстраиваться в последовательности: если математические буквенные символы можно комбинировать, то объясняется это тем, что сначала мы ставим проблемы и уже потом берем на себя доказательство теорем.14 В этом смысле хотя аксиомы и касаются проблем, они все же не поддаются доказа-

{13}

О текстуре золота или о связи между его свойствами, «Новые опыты», II, гл. 31,1, III, гл. 3, § 19.

14«Новые опыты», IV, гл. 2, § 7: о категории проблемы.

{83}

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже