Читаем Складка. Лейбниц и барокко полностью

Наконец, инфлексия сама по себе неотделима от бесконечного варьирования или от бесконечно переменной кривизны. Закругляя углы сообразно требованиям барокко и приумножая их по закону гомотетии (подобия), мы получаем кривую Коха, которая проходит через бесконечное количество угловатых точек и ни в одной из этих точек не допускает касательной; служит оболочкой бесконечно губчатого или полостного мира; образует более чем одну линию и менее чем одну поверхность (фрактальное измерение Мандельброта, выражаемое дробным или иррациональным числом; нон-измерение; промежуточное измерение).5 Вдобавок, гомотетия способствует совпадению вариации с переменой масштаба, как в случае с длиной берега в географии. Как только мы вмешиваем в дело флуктуацию, а не внутреннюю гомотетию, все меняется. Мы получаем уже не возможность определять угловатую точку между двумя другими, сколь бы близкими те ни были, — а свободу где угодно добавлять поворот, превращая всякий промежуток в место новой складчатости. Как раз здесь мы и переходим от сгиба к сгибу, а не от

точки к точке, а все контуры расплываются, создавая

4 О связи теории катастроф с органическим морфогенезом, ср. Rene Thom. Morphologie et I'imaginaire, Circe, 8–9 (и изложение семи сингулярностей, или катастроф-событий, р. 130).

5

Mandelbrot, Les objets fractals, Flammarion (о губчатом или полостном см. цитируемый М. текст Жана Перрена, р. 4–9). Мандельброт и Том с разных точек зрения имели мощные инспирации в духе Лейбница.

{30}

разнообразные формальные потенции материала, выходящие на поверхность и проявляющиеся в виде соответствующего количества поворотов и дополнительных сгибов. Трансформация инфлексии не допускает ни симметрии, ни привилегированного плана проекции. Инфлексия становится вихреобразной и происходит не столько благодаря продлению или приумножению, сколько через запоздание и промедление: по сути, линия закручивается в спираль, чтобы отсрочить инфлексию, произведя ее в движении, «подвешенном между небом и землей»; эта спираль неопределенным образом то удаляется от центра кривой, то приближается к нему, и в каждый миг «либо взлетает, либо рискует обрушиться на нас».6 Но вертикальная спираль задерживает и отсрочивает инфлексию не иначе, как обещая ее и делая ее неодолимой на какой-нибудь трансверсали: турбулентность никогда не бывает единственной, а ее спираль имеет фрактальное строение, сообразно чему между первичными турбулентностями всегда вставляются новые.7 Это и есть турбулентность, подпитывающаяся другими турбулентностями и — при стирании контура — завершающаяся не иначе, как чем-то вроде буруна или конской гривы. Здесь сама инфлексия становится вихреобразной, и в тоже время ее вариации открываются навстречу флуктуациям, сами становятся флуктуациями.

Определение барочной математики дается у Лейбница: объектом последней становится «новое влечение» переменных величин, т. е. сама вариация. По существу, ни в дробных числах, ни даже в алгебраических формулах не подразумевается вариативность как таковая, ибо каждый из их членов имеет или должен иметь определенное значение. По-иному дела обстоят с иррациональными числами и соответствующим им исчислени-

6 Окенгем и Шерер этими словами — на материале статуи Пермоцера «Апофеоз принца Евгения» (1718–1721)

— описывают барочную спираль: L'ame atomique, Albin Michel.

7 От сгиба к турбулентности, ср. Мандельброт, гл. 8, а также Каш, настойчиво выделяющий явления отсрочки.

{31}

Перейти на страницу:

Похожие книги

Афоризмы житейской мудрости
Афоризмы житейской мудрости

Немецкий философ Артур Шопенгауэр – мизантроп, один из самых известных мыслителей иррационализма; денди, увлекался мистикой, идеями Востока, философией своего соотечественника и предшественника Иммануила Канта; восхищался древними стоиками и критиковал всех своих современников; называл существующий мир «наихудшим из возможных миров», за что получил прозвище «философа пессимизма».«Понятие житейской мудрости означает здесь искусство провести свою жизнь возможно приятнее и счастливее: это будет, следовательно, наставление в счастливом существовании. Возникает вопрос, соответствует ли человеческая жизнь понятию о таком существовании; моя философия, как известно, отвечает на этот вопрос отрицательно, следовательно, приводимые здесь рассуждения основаны до известной степени на компромиссе. Я могу припомнить только одно сочинение, написанное с подобной же целью, как предлагаемые афоризмы, а именно поучительную книгу Кардано «О пользе, какую можно извлечь из несчастий». Впрочем, мудрецы всех времен постоянно говорили одно и то же, а глупцы, всегда составлявшие большинство, постоянно одно и то же делали – как раз противоположное; так будет продолжаться и впредь…»(А. Шопенгауэр)

Артур Шопенгауэр

Философия