Читаем Скрытая реальность. Параллельные миры и глубинные законы космоса полностью

В моих предыдущих книгах «Элегантная Вселенная» и «Ткань космоса» рассказывалось об истории возникновения теории струн и её основных свойствах. За годы, прошедшие с момента появления этих книг, состояние и общий статус теории привлекли внимание широкой общественности, что совершенно естественно. Несмотря на все успехи теории струн, от неё ждут определённых предсказаний, экспериментальная оценка которых даст ответ на вопрос о правильности или неправильности теории. Так как три новых типа мультивселенных (которые мы обсудим в главах 5 и 6) возникают в теории струн, сейчас важно обсудить текущий статус теории и возможности для её экспериментальной проверки и согласования с наблюдательными данными. Это и будет содержанием текущей главы.

Краткая история объединения

Когда Эйнштейн размышлял об объединении, науке были известны две силы: гравитация, описываемая его собственными уравнениями, и электромагнетизм, описываемый уравнениями Максвелла. Эйнштейн предполагал объединить две теории в единую математическую конструкцию, которая сочленила бы действие всех сил в природе. Эйнштейн был преисполнен надежд о своей единой теории. Работы Максвелла по объединению в XIX столетии совершенно справедливо рассматривались им как образцовый вклад в копилку человеческой мысли. До Максвелла электричество, текущее по проводам, притяжение, вызываемое детским магнитиком, и свет, идущий от Солнца к Земле, считались тремя разными, никак не связанными друг с другом явлениями. Максвелл осознал, что на самом деле они составляют сплетённое воедино научное триединство. Электрические токи порождают магнитные поля

; магниты, перемещающиеся рядом с проводами, порождают в них электрические токи; а волнообразные возмущения, бегущие сквозь электрические и магнитные поля,
порождают свет. Эйнштейн ожидал, что его собственная работа приведёт к продвижению программы объединения Максвелла и станет следующим и, возможно, финальным шагом на пути к единому описанию законов природы — такому описанию, в котором будут объединены электромагнетизм и гравитация.

Цель была весьма амбициозна, и Эйнштейн отнёсся к ней очень серьёзно. У него была уникальная способность полностью отдаваться задаче, которую он перед собой поставил, и последние тридцать лет своей жизни он полностью посвятил проблеме объединения. Его личный секретарь Хелен Дукас была рядом с ним в принстонском госпитале в предпоследний день его жизни, 17 апреля 1955 года. Она вспоминает, как прикованный к постели Эйнштейн почувствовал себя лучше и сразу же попросил принести черновики с уравнениями, в которых он писал и писал математические символы в безуспешной надежде, что единая теория поля выкристаллизуется. Настало утро, но Эйнштейн не проснулся. Его последние вычисления не пролили больше света на вопрос объединения.{24}

Немногие современники Эйнштейна разделяли его страсть к поискам объединения. С середины 1920-х до середины 1960-х годов физики, руководствуясь квантовой механикой, делали успехи в раскрытии тайны атома и использовании его скрытой мощи. Возник мощный очевидный соблазн подсмотреть, из чего устроена материя. И хотя многие соглашались, что единая теория была достойной целью, но в эру, когда теоретики и экспериментаторы рука об руку работали над открытием законов микромира, интерес к ней ослабевал. С уходом Эйнштейна работа над единой теорией практически прекратилась.

Вся глубина его неудачи была осознана, когда в последующих исследованиях выяснилось, что объединение осуществлялось в слишком узких рамках. Эйнштейн не только принижал роль квантовой физики (он полагал, что единая теория вытеснит квантовую механику, и поэтому нет никакой надобности закладывать её в основы теории), но в его работе не учитывались два дополнительных взаимодействия, обнаруженные экспериментально: сильное ядерное взаимодействие и слабое ядерное взаимодействие. Первое из них является тем сильным клеем, который не позволяет распасться атомному ядру, а второе, помимо прочего, ответственно за радиоактивный распад. Единая теория должна объединять не две силы, а четыре; мечта Эйнштейна стала ещё более призрачной.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика