Читаем Скрытая реальность. Параллельные миры и глубинные законы космоса полностью

Рис. 5.1. Две частицы (изображённые двумя сплошными линиями слева на каждой диаграмме) взаимодействуют, выстреливая друг в друга разными «пулями» («пули» — это такие частицы-переносчики взаимодействия, изображённые волнистыми линиями), после чего рикошетят вперёд (две сплошные линии справа). Каждая диаграмма даёт вклад в общую вероятность столкновения частиц друг с другом. Вклады с бо́льшим числом пуль становятся всё меньше

В лотерее спад определяется каждым следующим выигрышем, умноженным на фактор один на миллиард; в физическом примере он определяется каждым следующим столкновением с численным множителем, который называется константой связи, значение которой отражает вероятность того, что одна частица испустит «пулю»-переносчика взаимодействия, а вторая частица поглотит её. Для частиц, участвующих в электромагнитных взаимодействиях, например электронов, экспериментально измерено, что константа связи фотонных пуль равна примерно 0,0073.{37}

Для нейтрино, участвующих в слабом взаимодействии, константа связи равна примерно 10
−6. Для кварков, из которых состоят протоны, которые мчатся в Большом адронном коллайдере и участвуют в сильном ядерном взаимодействии, константа связи равна примерно 1. Эти числа не так малы, как число 0,000000001 из лотереи, но если многократно умножать 0,0073 на себя, то результат быстро станет исчезающее мал. После одной итерации это примерно 0,0000533, после второй итерации это примерно 0,000000389. Поэтому у теоретиков редко возникают проблемы при подсчёте числа многократных столкновений электронов. Вычисления с многократными столкновениями крайне сложны, а конечный ответ настолько мал, что можно остановиться на нескольких испущенных фотонах и всё равно получить очень точный ответ.

Даже не сомневайтесь, физики очень хотят иметь точные результаты. Однако большинство вычислений слишком сложны, поэтому теория возмущений — это лучший инструмент из тех, что у нас есть. К счастью, при достаточно малых константах связи приближённые вычисления могут приводить к предсказаниям, которые хорошо согласуются с экспериментом.

Похожий способ вычислений по теории возмущений долгое время являлся основой струнных исследований. В теории струн имеется некоторое число, которое называется струнной константой связи

(струнная константа, для краткости), определяющая вероятность столкновения двух струн. Если теория окажется правильной, то однажды струнная константа может быть измерена, подобно перечисленным выше константам связи. Но так как такие измерения в настоящий момент совершенно гипотетичны, величина струнной константы остаётся абсолютно неизвестной. В течение последних нескольких десятилетий, не имея каких-либо указаний из эксперимента, струнные теоретики сделали ключевое допущение, что струнная константа мала. До некоторой степени это похоже на поиск потерянных ключей под фонарём, потому что малая струнная константа позволяет физикам с помощью теории возмущений пролить яркий свет на вычисления. Поскольку до теории струн в большинстве успешных теорий константа связи была действительно мала, то продолжая аналогию с фонарём, можно сказать, что ключи часто лежали именно там, где светло. Так или иначе, допущение малости константы связи позволило провести огромное количество математических вычислений, которые не только прояснили базовые процессы взаимодействия струн, но также дали много информации о фундаментальных уравнениях теории.

Если струнная константа действительно мала, то приближённые вычисления достаточно точно отразят физическую суть теории струн. Но что, если она не мала? В отличие от лотереи и сталкивающихся электронов, большая струнная константа означает, что последовательные уточнения к приближению на первом шаге приведут к растущим вкладам, поэтому не будет никаких оснований прекратить вычисления на определённом этапе. Тысячи вычислений, проделанных на основе теории возмущений, станут бессмысленными; годы исследований окажутся потраченными зря. Вдобавок, даже с умеренно малой константой связи всё равно надо заботиться о правомерности сделанных приближений, по крайней мере при определённых условиях, дабы не пропустить тонких, но важных физических эффектов, как с каплей дождя, падающей на валун.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика