Итак, в этих широких пределах, мы разрешаем мутацию, которая за один раз, в одном поколении, может изменить любую комбинацию из наших девяти генов. Кроме того, значение каждого гена может изменяться с любым шагом, лишь не выводящим его значение за пределы от -9 до +9. Что это значит? Это значит, что эволюция может теоретически проскакивать, за единственное поколение от любой точки Страны Биоморф, до любой другой. Не только до любой точки на плоскости, но и до любой точки во всём девятимерном гиперобъёме. Например, если вы хотите проскочить за одно поколение от «насекомого» до «лисы» в рисунке 5, то следуйте такому рецепту: прибавьте нижеуказанные величины к значениям генов, с номерами соответственно от 1 до 9: -2, 2, 2, -2, 2, 0, -4, -1, 1. Но так как мы рассматриваем случайные прыжки, то значит, все точки в Стране Биоморф равновероятны как цель для любого из этих скачков. Легко вычислить шансы на то, что случайный прыжок приведёт нас в любую другую точку, кроме нашей намеченной «лисы». Это просто общее количество биоморф в пространстве. Вы уже чувствуете, что нам предстоит вычислить ещё одно астрономически большое число? У нас есть девять генов, каждый из которых может принимать любое из 19 значений. Тогда общее число биоморф, к которым мы можем перескочить за один шаг — это 19, умноженное само на себя 9 раз, или 19 в степени 9, что составит порядка полтриллиона биоморф (если точно, то 322 687 697 779; однако при истинно случайных скачках такое количество попыток не влечёт стопроцентно гарантированного попадания! Вероятность, что такое количество попыток приведёт к цели составляет порядка 50 %. О гарантированном попадании в цель при таком числе попыток можно говорить только, если ни одна из попыток не повторит другую, что требует запоминания сделанных ходов, что есть уже отчасти нарастающий отбор, т. е. не чистая спонтанность — А.П.). Сущий пустяк в сравнению с Азимовским "числом гемоглобина", но тем не менее, я бы сказал, что это очень много. Если вы начали с «насекомого», и подобно сумасшедшей блохе, подскочили полтриллиона раз, то вы бы пожалуй, однажды и попали бы в "Лису".
Как всё вышесказанное соотносится с реальной эволюцией? Всё так же — оно ещё раз доказывает важность постепенных, пошаговых изменений. Некоторые эволюционисты отрицали необходимость такого рода градуализма в эволюции. Наши вычисления с биоморфами точно указывают нам на одну из причин, почему постепенность, пошаговость изменений важна. Когда я говорю, что можно ожидать перескока эволюции от «насекомого» до одного из его непосредственных соседей, но не от «насекомого» сразу к «лисе» или «скорпиону», то я имею в виду следующее. Если бы по-настоящему случайные скачки действительно происходили, тогда скачок от «насекомого» к «скорпиону» был бы совершенно возможен. И он был бы столь же вероятен, как скачок от «насекомого» до одного из его непосредственных соседей. И он был бы столь же вероятен, как и скачок к любому другому биоморфу в Стране. А вот в этом загвоздка. Ибо число Биоморф в Стране — полтриллиона, и раз уж ни один из них не более вероятен, чем любой другой, то вероятность скачка к любому конкретному из них достаточно мала, чтобы её можно было проигнорировать.
Заметьте, что это не наводит нас на предположение о существовании мощного неслучайного "давления отбора". Не имело бы значения, если бы вам обещали королевскую награду за достижение «скорпиона» одним случайным скачком. Но у вас на это один шанс из полутриллиона! Однако если вместо большого скачка вы будете идти по одному шагу зараз, и получать при этом одну маленькую монетку за шаг в правильном направлении, вы бы достигли «скорпиона» за очень короткое время. Не обязательно за наикратчайшее из возможных время в 30 поколений, тем не менее, очень быстро. Теоретически, скачком вы могли бы заработать быстрее — вплоть до единственного. Но из-за астрономически низкого шанса на успех такого предприятия, альтернативный путь — ряд маленьких шагов, каждый из которых отталкивается от ранее накопленного успеха предыдущих шагов, является единственно выполнимым.